
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

PCIO

Peripheral Component Interconnect
Input Output Controller

PRELIMINARY

Part No.: 802-7837-01
March 1997

Sun Microelectronics

Please
Recycle

Copyright © 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY EXPRESS REPRESENTATIONS OF WARRANTIES. IN ADDITION, SUN
MICROSYSTEMS, INC. DISCLAIMS ALL IMPLIED REPRESENTATIONS AND WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTURAL PROPERTY RIGHTS.

This document contains proprietary information of Sun Microsystems, Inc. or under license from third parties. No part of this document may be reproduced in any form or by
any means or transferred to any third party without the prior written consent of Sun Microsystems, Inc.

Sun, Sun Microsystems and the Sun Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The information contained in this document is not designed or intended for use in on-line control of aircraft, aircraft navigation or aircraft communications; or in the design,
construction, operation or maintenance of any nuclear facility. Sun disclaims any express or implied warranty of fitness for such uses.

Contents iii

Contents

1. Introduction 1

Objectives 1

Key Device Features 1

Intended Applications 2

2. Functional Overview 3

Major Component Blocks 3

Bus Adapter 4

Channel Engine Interface 5

EBus2 Channel Engine 5

Ethernet Channel Engine 5

Scan Control Block 5

3. Programmer’s Model 7

Address Map 7

PCI Bus Configuration Space 7

iv Peripheral Component Interconnect Input Output Controller • March 1997

Command Register 10

Status Register 10

Expansion ROM 11

Diagnostics Register 12

EBus2 Channel Engine 13

Ethernet Channel Engine 13

4. Bus Adapter 15

Introduction 15

Address Map 15

Bus Adapter Blocks 16

Block Diagram 16

Input Datapath 16

Output Datapath 17

Configuration Space 18

Interrupt Router 21

Control Logic 22

PCI Bus Control 22

CEI Control 22

PCI Compatibility 23

Little Endian-ness 23

Commands 23

Basic Transfer Control 24

Addressing 24

Byte Alignment 25

Transaction Termination 25

Fast Back-to-Back 26

Contents v

Arbitration Parking 26

Latency 26

Exclusive Access 27

Device Selection 27

5. Channel Engine Interface 29

Goals 29

Terminology/Glossary 29

Signals 30

Transactions 33

Slave Write 33

Slave Read 34

DMA Write (Channel Engine to Memory) 35

Data Ports 37

Error Handling & Reporting 38

Slave Transactions 38

Parity 38

Late Error 39

Access Error and Bus Sizing 40

DMA Transactions 40

Parity 40

Late Error 40

Bus Errors 41

Bus Sizing 41

Arbitration 41

Design Guidelines 41

Timing 41

vi Peripheral Component Interconnect Input Output Controller • March 1997

Cycle Time Budget Allocation 41

Signal Loading 42

6. Ethernet Channel Engine 43

Introduction 43

Overview 43

Major Components 45

Functional Blocks 45

Interfaces 45

Features List 46

Functional Description 46

Overview 47

Hardware Architecture 47

Functional Blocks 48

Interfaces and Data Paths 57

Clock Domains 59

Host Memory Data Management 61

Transmit Data Descriptor Ring 61

Receive Free Buffer Descriptor Ring 61

Local Memory Data Management 62

Transmit FIFO Data Structures 62

Receive FIFO Data Structures 63

Theory of Operation and Data Flow 63

Transmit Operation 63

▼ TxFIFO Load Process 63

▼ TxFIFO Unload Process 65

Receive Operation 65

Contents vii

▼ RxFIFO Load Process 65

▼ RxFIFO Unload Process 66

Error Conditions and Recovery 67

Fatal Errors 67

Non-fatal Errors 68

Programmer’s Reference Guide 70

Overview 70

Host Memory Data Structures 70

Transmit Data Structures 71

Receive Data Structures 72

Local Memory Data Structures 74

TxFIFO Data Structures 76

RxFIFO Data Structures 76

Other User Accessible Resources 76

SEB Programmable Resources 79

ETX Programmable Resources 83

ERX Programmable Resources 87

MAC Programmable Resources 90

MIF Programmable Resources 101

Programming Notes 105

Initialization Sequences 105

▼ Global Initialization 105

Memory Map 107

7. EBus2 Channel Engine 111

Introduction 111

Features 111

viii Peripheral Component Interconnect Input Output Controller • March 1997

Address Map 113

EBus2 Slave Interface Description 116

Functional Description 116

Address Phase 116

Data Phase 116

Byte Stacking 117

Buffered Slave Transfers 117

IOCHRDY 117

Slave Transfer Size 117

EBus2 DMA Interface Description 117

Functional Description 118

Transfers From System Memory (DMA Read) 118

Transfers To System Memory (DMA Write) 118

Chained Mode 119

End of Transfer (Terminal Count) 119

EBus2 Device Acknowledgment 119

Host Bus Errors 120

Differences between EBus2 DMA Engine and SCSI DMA of
DMA2 120

Priority Mechanism 121

Level 1 121

Level 2 121

Data Rates of EBus2 DMA Devices 122

DMA Testing 122

EBus2 Register Description 123

AUXIO Registers 123

Floppy AUXIO Register 123

Audio AUXIO Register 124

Contents ix

Power AUXIO Register 124

LED AUXIO Register 124

PCI/Mode AUXIO Register 125

Frequency AUXIO Register 125

SCSI Oscillator AUXIO Register 126

Temperature Sense AUXIO Register 126

Timing Control Registers 127

Timing Control Register 1 (TCR1) 127

Timing Control Register 2 (TCR 2) 129

Timing Control Register 3 (TCR3) 132

DMA Registers 133

DMA Control and Status Register (DCSR) 134

DMA Address Count Register (DACR) and DMA Next
Address Register (DNAR) 138

DMA Byte Count Register (DBCR) and DMA Next Byte
Register (DNBR) 139

Programming Notes 140

Timing Control Register Programming 140

Slave Cycle Time Programming 140

DMA Priority Programming 141

DMA Cycle Time Programming 141

DMA Register Programming 142

To set up a transfer to or from the EBus2 device using the
DMA engine 142

To stop a transfer to or from the EBus2 device using the
DMA engine 142

Use of Internal Byte Counter with Next Address feature
disabled 142

Use of Internal Byte Counter with Next Address feature
enabled 143

x Peripheral Component Interconnect Input Output Controller • March 1997

Timing Diagrams 147

EBus2 Slave Cycles 147

Ebus2 DMA Cycles 148

8. Clock and Scan Control 149

Introduction 149

Test and Debug Modes 149

Boundary Scan Modes 149

ATPG Mode 150

Debug modes 150

Dumping internal state 150

Clock Controller 150

JTAG Controller 151

Control logic 152

Scan Data Paths 153

JTAG Instructions and ID 154

Figures xi

Figures

PCIO Block Diagram 4

Bus Adapter Block Diagram 17

Bus Adapter Input Datapath 18

Bus Adapter Output Datapath 19

Configuration Space and Address Decoders 20

Slave Write Transactions 34

Slave Read Transactions 35

DMA (Master) Write Transaction: 32-bit - 16-byte burst 36

DMA (Master) Write Transaction: Extended Mode - 32-byte burst 37

DMA (Master) Read Transaction: 32-bit - 8-byte burst 38

Reporting a parity error during a slave write 39

FEPS Block Diagram 44

Ethernet Channel Engine 49

Transmit DMA Channel 54

Receive DMA Channel 57

Ethernet Channel Clock Domains 60

xii Peripheral Component Interconnect Input Output Controller • March 1997

Transmit Host Data Structure 73

Receive Host Data Structure 75

TxFIFO Organization 77

RxFIFO Organization 78

EBus2 channel engine block diagram 112

Programmable timing parameters 127

EBus2 slave read cycle 147

EBus2 Slave write cycle 147

EBus2 DMA read cycle 148

EBus2 DMA write cycle 148

JTAG Logic Block Diagram 152

PCIO Scan Registers 153

Tables xiii

Tables

PCIO PCI Configuration Space 7

Command Register Bits 10

Status Register Bits 11

Diagnostics Register Bits 12

“Intelligent” Little-to-Big Endian Conversion 21

PCI Bus Commands Implemented and Generated by PCIO 24

Channel Engine Interface Signals 30

Slave Access Encoding of ce_din and ce_dout 32

DMA Transaction Encoding of ce_din and ce_dout 32

Transmit Data Structures: Descriptor Layout – Control Word 71

Transmit Data Structures: Descriptor Layout – Data Buffer Pointer 71

Receive Data Structures: Descriptor Layout – Status Word 72

Receive Data Structures: Descriptor Layout – Free Buffer Pointers 74

TxFIFO Data Structures: Control Word Layout 76

RxFIFO Data Structures: Status Word Layout 76

Software ResetRegister 79

xiv Peripheral Component Interconnect Input Output Controller • March 1997

Global Configuration Register 80

Global Status Register 81

ETX Configuration Register 84

ETX State Machine Register 86

ERX Configuration Register 87

ERX State Machine Register 89

XIF Configuration Register 90

TX_MAC Configuration Register 92

TX_MAC State Machine Register 96

RX_MAC Configuration Register 97

RX_MAC State Machine Register 100

MIF Configuration Register 102

MIF Frame/Output Register 103

MIF Status Register 104

MIF State Machine Register 105

Ethernet Channel Engine Address Map 107

EBus2 Address Map 113

DMA registers 115

Encoding of Timing control register 3 PR bit 121

Data rate and Latency tolerance of EBus2 DMA devices 122

Floppy AUXIO register bit definitions 124

Audio AUXIO register bit definitions 124

Power AUXIO register bit definitions 124

LED AUXIO register bit definitions 125

Tables xv

PCI/Mode AUXIO register bit definitions 125

Frequency AUXIO register bit definitions 126

SCSI oscillator AUXIO register bit definitions 126

Temperature sense AUXIO register bit definitions 126

Recovery Time (Trec) based on TCR1 bit encoding 128

Strobe width (Tstrb) based on TCR1 bit encoding 128

Tsu and Thld based on TCR1 bit encoding 128

Timing control register 1 (TCR1) bit definitions 129

Recovery Time (Trec) based on TCR2 bit encoding 130

Strobe width (Tstrb) based on TCR2 bit encoding 130

Setup time (Tsu) and hold time (Thld) based on TCR2 bit encoding 131

Timing control register 2 (TCR2) bit definitions 131

Encoding of timing parameters 132

Timing control register 3 (TCR3) bit definitions 132

EBus2 DMA CSR Register 134

Encoding for the BURST_SIZE bits 137

DACR and DNAR bits 138

DBCR and DNBR bits 139

Scan Chain Lengths 153

JTAG ID fields 154

JTAG Instructions 154

xvi Peripheral Component Interconnect Input Output Controller • March 1997

1

CHAPTER 1

Introduction

The PCIO is a high integration, high performance single chip IO subsystem,
interfacing to the PCI Local Bus. Off a single PCI bus load, it integrates high speed
Ethernet and EBus2, a generic, slave-DMA bus to which are connected off-the-shelf
peripherals implementing the rest of the Sun core IO system.

1.1 Objectives
The objectives for PCIO are a reflection of the systems it is targeted to. These are
primarily cost-sensitive, high performance, single and multi processor desktops. The
objectives include:

■ Low cost
■ Time-to-volume/time-to-market
■ Complete IO subsystem: Ethernet, keyboard, mouse, serial ports, parallel port,

stereo audio, floppy disk, boot PROM and time-of-day/non-volatile RAM
■ High performance: high bandwidth, low interrupt overhead, tolerant of relatively

high interrupt and bus latencies
■ Modularity, at the architectural, design and test levels
■ Full compliance with Sun and industry standards
■ Suitability for licensing and third party marketing

1.2 Key Device Features
The following functions are built-in:

2 Peripheral Component Interconnect Input Output Controller • March 1997

■ PCI Local Bus master/slave interface, compliant with PCI Local Bus Specification,
Revision 2.01

■ 10baseT (802.3) and 100baseT (802.30) Ethernet, using derivative of MAC, with
fully buffered transmit and receive channels; media-independent interface (MII)

■ Expansion bus interface (EBus2), supporting eight external devices and four
buffered slave-DMA channels

■ Oscillator for 40 MHz SCSI clock, and free running 10 MHz real-time clock
■ IEEE 1149.1 JTAG compliant test architecture

The following functions are implemented with off-the-shelf devices, interfacing
directly to the EBus2 interface:

■ National Semiconductors PC87303VLJ Super IO, integrating 82077-compatible
floppy controller with DMA, parallel port, P1284-compliant, with ECP and EPP
with DMA and two 16C550 serial controllers with 16-byte FIFOs, for keyboard
and mouse

■ Two high performance sync/async serial ports, using Siemens’ SAB82532. 460.8
KBaud async, 384 Kbaud sync.

■ Sun-compatible NVRAM, MK48T59, with alarm clock interrupt for power
management

■ EPROM or flash EPROM, 8-bit wide, up to 16 Mbyte, for boot or Fcode
■ CS4231 Audio CODEC
■ Access to USC and DSC EBus control port
■ Auxiliary IO ports, for power supply control, temperature sensor, frequency

calibration and other miscellaneous functions

1.3 Intended Applications
PCIO is being designed as part of the Ultra AX program. Ultra AX is a single
processor, UltraSPARC based desktop using the PCI bus as its IO bus.

In addition, PCIO can be used on any system with a standard PCI bus. In
‘motherboard’ mode it makes the PROM available for boot code; in ‘add-in’ mode it
can be used in card adapters or as a secondary motherboard design.

1. Although designed to the PCI 2.0 specification, PCIO is compatible with the 2.1 specification as well.
However, certain 2.1-recommended features, such as pseudo-split reads and a tighter interpretation of the
initial latency rule are not implemented

3

CHAPTER 2

Functional Overview

This chapter identifies and provides a brief description of each of the major
component blocks in PCIO.

2.1 Major Component Blocks
FIGURE 2-1 contains the block diagram for PCIO, showing the major component
blocks. PCIO is built around an internal bus, the Channel Engine Interface, which
provides the key to its modularity. Above the Channel Engine Interface, the Bus
Adapter connects to the PCI bus. The two identical ports on the Channel Engine
Interface are used for each of PCIO’s functional units: Ethernet and Ebus2. Each of
these has its own set of control and status registers, data buffers and the core logic
function.

4 Peripheral Component Interconnect Input Output Controller • March 1997

FIGURE 2-1 PCIO Block Diagram

2.1.1 Bus Adapter
The Bus Adapter provides a bus-independent layer between the channel engines and
the PCI bus. The PCI bus interface is 32-bit and 33 MHz, fully compliant with the
PCI Local Bus Specification, Revision 2.0. As a master, it is capable of 64-byte (8 word)
bursts. DMA writes are buffered in the Bus Adapter to support back to back
transactions.

The Bus Adapter also contains the PCI bus Configuration Space. PCIO presents itself
to PCI as a multi-function device: Ebus2 (a bridge) and Ethernet. Each function has
its own area in the configuration space.

Ebus2 Channel
Engine

Ethernet Channel
Engine

MII Ebus2

PCI
Configuration
Space
(multi-function)

JTAG

PCI Local Bus

Scan
Control

Ethernet DMA
• 2 DMA Channels
• 2048 byte FIFO

per channel

Media Access
Control

• TP 10/100 MHz
• MII

Ebus2 DMA
• 4 DMA Channels
• 128 byte FIFO

p/channel

Ebus2 Interface
• Prog. timing
• Prog. priority

Bus Adapter
• PCI bus v2.0 compliant, 33 MHz
• double 64-byte write buffers
• 100+ Mbytes/sec peak transfer rate

Chapter 2 Functional Overview 5

2.1.2 Channel Engine Interface
The Bus Adapter contains two identical Channel Engine Interface ports, one for each
channel engine. The Channel Engine Interface is a bus independent interface,
resulting in a high level of modularity at the design and test level.

2.1.3 EBus2 Channel Engine
The EBus2 Channel Engine interfaces standard off-the-shelf devices to PCIO. Up to
eight single or multi-function Intel-style 8-bit devices can be accommodated with a
minimum of glue logic. Four internal DMA engines can be attached to any of these
devices, buffering data streams in 128-byte FIFOs for each channel.

The standard set of IO devices is: PC87303VLJ Super IO (integrates 82077 floppy
controller, dual 16C550 serial controllers for keyboard and mouse and ECP/EPP
P1284 parallel port), SAB82532 serial communications controller, CS4231 audio
CODEC, MK48T59 NVRAM with alarm clock, boot PROM and USC/DSC control
port.

The EBus2 Channel Engine provides access to several general purpose IO lines (a.k.a.
AUXIO), used to control miscellaneous system functions.

2.1.4 Ethernet Channel Engine
The Ethernet Channel Engine provides a buffered full duplex DMA engine and a
Media Access Control function based on MAC. The descriptor-based DMA engine
contains independent transmit and receive channels, each with 2048 bytes of on-chip
buffering. The MAC provides a 10 or 100 Mbps CSMA/CD protocol based network
interface conforming to IEEE 802.3, proposed IEEE 802.30 and Ethernet
specifications.

2.1.5 Scan Control Block
The Scan Control contains a tap controller.

6 Peripheral Component Interconnect Input Output Controller • March 1997

7

CHAPTER 3

Programmer’s Model

3.1 Address Map

3.1.1 PCI Bus Configuration Space
PCIO’s PCI Configuration space complies with the PCI Bus Specification v2.0.
Unless otherwise indicated, all the configuration space is accessible as bytes, half-
word and word, and is read/write.

PCIO contains two functions within a single device: EBus2 and Ethernet. These are
implemented as functions 0 and 1 respectively. PCIO responds to configuration
cycles for functions 2 to 7 indicating they are not implemented (i.e. read zeroes from
all locations.)

Detailed information on the PCI configuration space can be found in Chapter 6 of
the PCI bus specification.

Note – All multi-byte configuration fields are in LITTLE ENDIAN format

Table 3-1 PCIO PCI Configuration Space

Offset Size R/W Name

EBus2

0x000 - 0x001 16-bit RO Vendor ID = 0x108E

0x002 - 0x003 16-bit RO Device ID = 0x1000

8 Peripheral Component Interconnect Input Output Controller • March 1997

0x004 - 0x005 16-bit RW Command Register

0x006 - 0x007 16-bit RW Status Register

0x008 8-bit RO Revision ID = 0x01

0x009 - 0x00B 24-bit RO Class Code
0x00B Base Class = 0x06 Bridge Device
0x00A Sub Class = 0x80 Other Bridge
0x009 Prog i/f = 0x00

0x00C 8-bit R/W Cache Line Size, in units of 32-bit words;
resets to 0x00

0x00D 8-bit R/W Latency Timer

0x00E 8-bit RO Header Type = 0x80, identifies multi-
function device, standard header type

0x00E 8-bit RO BIST = 0x00, not capable

0x010 - 0x013 32-bit RW Base Address Register, Boot ROM, 16
Mbyte space: bits [23:0] read as zero; reset
value depends on setting of boot[1:0] pins:
00 reset to 0x3000.0000
01 reset to 0x7000.0000
10 reset to 0xB000.0000
11 reset to 0xF000.0000

0x014 - 0x017 32-bit RW Base Address Register, EBus2 Channel
Engine, 8 Mbyte space; bits [22:0] read as
zero; resets to 0xF100.0000

0x018 - 0x02F Reserved, read as zero

0x030 - 0x033 32-bit RW Expansion ROM Base Address, 16 Mbyte
space: bits [23:0] read as zero; resets to
0x0000.0000

0x034 - 0x03B Reserved, read as zero

0x03C 8-bit RW Interrupt Line

0x03D 8-bit RO Interrupt Pin
= 0x01, use INTA# if ADD-IN mode
= 0x00, if MOTHERBOARD mode

0x03E 8-bit RO Min_Gnt = 0x0A, in units of 1/4 of a
microsecond = 2.5 µS

0x03F 8-bit RO Max_Lat = 0x19, in units of 1/4 of a
microsecond = 6.25 µS

0x040 32-bit RW Diagnostics Register

Table 3-1 PCIO PCI Configuration Space (Continued)

Offset Size R/W Name

Chapter 3 Programmer’s Model 9

0x044-0x0FF Reserved, read as zero

Ethernet

0x100 - 0x101 16-bit RO Vendor ID = 0x108E

0x102 - 0x103 16-bit RO Device ID = 0x1001

0x104 - 0x105 16-bit RW Command Register

0x106 - 0x107 16-bit RW Status Register

0x108 8-bit RO Revision ID = 0x01

0x109 - 0x10B 24-bit RO Class Code
0x00B Base Class = 0x02 Network Device
0x00A Sub Class = 0x00 Ethernet
0x009 Prog i/f = 0x00

0x10C 8-bit R/W Cache Line Size, in units of 32-bit words;
resets to 0x00

0x10D 8-bit R/W Latency Timer

0x10E 8-bit RO Header Type = 0x80, identifies multi-
function device, standard header type

0x10E 8-bit RO BIST = 0x00, not capable

0x110 - 0x113 32-bit RW Base Address Register, Ethernet Channel
Engine, 32 Kbyte space; bits [14:0] read as
zero; resets to 0x0000.0000

0x114 - 0x117 Reserved, read as zero

0x118 - 0x12F Reserved, read as zero

0x130 - 0x133 32-bit RW Expansion ROM Base Address, 16 Mbyte
space: bits [23:0] read as zero; resets to
0x0000.0000

0x134 - 0x13B Reserved, read as zero

0x13C 8-bit RW Interrupt Line

0x13D 8-bit RO Interrupt Pin
= 0x02, use INTB# if ADD-IN mode
= 0x00, if MOTHERBOARD mode

0x13E 8-bit RO Min_Gnt = 0x0A, in units of 1/4 of a
microsecond = 2.5 µS

0x13F 8-bit RO Max_Lat = 0x05, in units of 1/4 of a
microsecond = 1.25 µS

Table 3-1 PCIO PCI Configuration Space (Continued)

Offset Size R/W Name

10 Peripheral Component Interconnect Input Output Controller • March 1997

3.1.1.1 Command Register

The command register provides coarse control over a function’s ability to generate
and respond to PCI cycles. When a 0 is written to this register, the function is
logically disconnected from the PCI bus for all accesses except configuration
accesses. Each function in PCIO has its own command register.

Note – Please refer to §6.2.2 of the PCI bus specification for more information on the
command register

3.1.1.2 Status Register

The status register is used to record information for PCI bus related events. Reads to
this register behave normally; during writes, bits can only be reset, but not set. A bit
is reset whenever the register is written, and the data in the corresponding bit
location is a 1. Each function in PCIO has its own status register.

Table 3-2 Command Register Bits

Bit Usage

0 IO Space — Not implemented, read back as zero

1 Memory Space — Controls a function’s response to memory space accesses:
when set, allows the function to respond to memory space accesses. Reset
to zero for Ethernet and for EBus2 in ADD-IN mode; reset to one for EBus2
in MOTHERBOARD mode

2 Bus Master — Controls a function’s ability to act as a master on the PCI
bus: when set, allows the device to behave as a bus master. Reset to zero

3 Special Cycles — Not implemented, read back as zero

4 Memory Write and Invalidate Enable — Controls whether a master can
generate the Memory Write and Invalidate command (when set.) Reset to
zero.

5 VGA Palette Snoop — Not implemented, read back as zero

6 Parity Error Response — This bit controls the function’s response to parity
errors.

7 Wait Cycle Control — Not implemented, read back as zero

8 SERR# Enable — This bit is an enable for the SERR# driver: when set, the
SERR# pin driver is enabled

9 Fast Back-to-Back Enable — Not implemented, read back as zero

15 - 10 Reserved, read back as zero

Chapter 3 Programmer’s Model 11

Note – Please refer to §6.2.3 of the PCI bus specification for more information on the
status register

3.1.1.3 Expansion ROM

Although both function units have Expansion ROM Base Address registers, the two
spaces map to the same physical ROM device, which is the same device used as boot
ROM. Offset 0x00 from the either Expansion ROM space or Boot ROM space will
read the first byte of the EPROM.

Table 3-3 Status Register Bits

Bit Usage

6 - 0 Reserved, read back as zero

7 Fast Back-to-Back Capable — Read-only, set to 1, indicates PCIO is capable
of accepting fast back-to-back transactions

8 Data Parity Detected — Set when three conditions are met: 1) PERR# was
asserted or observed asserted, 2) function was the bus master for the
transaction in which the error occurred, 3) Parity Error Response bit in
command register is set

10 - 9 DEVSEL Timing — Read-only, set to 01 (medium)

11 Signaled Target Abort — When set, indicates the function terminated a
transaction with a target-abort; this bit is implemented only in the EBus2
configuration space, it is read back as zero in Ethernet and SCSI

12 Received Target Abort — When set, indicates the function had a transaction
terminated by a target-abort

13 Received Master Abort — When set, indicates the function had a
transaction terminated by a master-abort

14 Signaled System Error — Set when any of the functions asserts SERR#; this
bit is implemented only in the EBus2 configuration space, it is read back as
zero in Ethernet

15 Detected Parity Error — Set when a function detects a parity error and the
Parity Error Response in the command register is set

12 Peripheral Component Interconnect Input Output Controller • March 1997

3.1.1.4 Diagnostics Register

The diagnostics register in the EBus2 configuration space provides a means to force
a variety of error and exception conditions into the system. Although this register is
read-write, most of the bits are self-clearing: they will reset themselves after
generating the desired condition.

In order to write to the diagnostics register, the enable_diag_reg bit (bit 31) must be
written first. Writes with this bit reset are ignored.

All bits in this register reset to zero.

Table 3-4 Diagnostics Register Bits

Bit Name Usage

0 bad_addr_parity_master Computes wrong parity during address phases,
when PCIO is bus master; will cause SERR# to be
asserted by other devices in the bus (note: PCIO
will not assert SERR# under this condition)

1 bad_addr_parity_slave Computes wrong parity during address phases,
when PCIO is not the bus master; will cause
SERR# to be asserted by PCIO

2 bad_data_parity_master Computes wrong parity during data phases, when
PCIO is doing DMA writes; will cause PERR# to
be asserted by the agent receiving data

3 bad_data_parity_slave Computes wrong parity during data phases, when
PCIO is data receiver (PIO write and DMA read);
will cause PCIO to assert PERR#

4 Reserved [Write Buffer Enable] - not implemented

5 Reserved, read back as zero

6 gen_disconnect Causes PCIO to disconnect during a slave
transaction, without returning any data

7 gen_target_abort Causes PCIO to generate a target-abort during a
slave transaction

8 use_byte_holes Causes PCIO to use the 4-bit mask in bits [12:9] as
the byte enables in the next transaction when
PCIO is a master

12 - 9 byte_holes[3:0] Byte enable mask; used with use_byte_holes bit to
generate byte holes in DMA streams

Chapter 3 Programmer’s Model 13

3.1.2 EBus2 Channel Engine
The address map for registers in the EBus2 channel engine can be found in Table 7-1.

3.1.3 Ethernet Channel Engine
Addresses on the Ethernet Channel Engine are offset from the Base Address Register
0 in the Ethernet section of the configuration space (Configuration Space address
0x110.) The address map can be found in Table 6-23.

13 arb_write Arbitrate PIO Writes, when set will force PIO
writes to arbitrate for the CEI before proceeding;
normally, arbitration is not needed, but setting
this bit is required for running the diagnostic
loopback from one DMA engine to another in
EBus; reset to zero

14 force_swap This bit, when set, will cause any descriptor
transfer in the CEI to undergo byte swapping,
rather than passing straight through. Reset to
zero.

30 - 15 Reserved, read back as zero

31 enable_diag_reg enable_diag_reg:

Table 3-4 Diagnostics Register Bits (Continued)

Bit Name Usage

14 Peripheral Component Interconnect Input Output Controller • March 1997

15

CHAPTER 4

Bus Adapter

4.1 Introduction
The Bus Adapter provides the layer between the bus-independent Channel Engine
Interface and the PCI Local Bus. Its main features are as follows:

■ Single time domain operates at the PCI Bus frequency

■ PCI Local Bus Revision 2.0 compatibility, 32-bit only

■ Full master and slave capabilities

■ 64-byte bursts as initiator

■ Multi-function configuration space, with independent address decoders for each
function

■ Dual-buffered DMA WRITE path

■ Two Channel Engine Interface ports, 32/64-bit wide

■ Interrupt router for PCI Bus add-in card or motherboard modes

4.2 Address Map
There are no addressable registers in the Bus Adapter accessible during normal
device operation. The PCI Bus Configuration Space is only available during PCI
configuration cycles and contains registers which set up PCIO’s basic operating
functions. The address map for the Configuration Space is in the “Address Map”
section of Chapter 3, “Programmer’s Model.”

16 Peripheral Component Interconnect Input Output Controller • March 1997

4.3 Bus Adapter Blocks

4.3.1 Block Diagram
FIGURE 4-1 contains the block diagram for the Bus Adapter. The Input Datapath
contains pipeline registers and a 32-bit parity checker. The Output Datapath contains
dual DMA write buffers, address registers for pending DMA transactions, and a 32-
bit parity generator. The Configuration Space contains the registers defined by the
PCI Bus Specifications, and address decoders. The Interrupt Router directs the
different channel engine interrupts to independent interrupt pins or to PCI INTA, B,
C and D. Finally, the Control Logic is composed of a PCI Bus Control, dealing with
the PCI Bus and one end of both input and output datapaths, and the CEI Control,
dealing with the Channel Engine Interface and the other end of the input and output
datapaths.

4.3.2 Input Datapath
A more detailed view of the Input Datapath is provided in FIGURE 4-2. The input
datapath contains input pipeline registers on the PCI Bus signals, to minimize
timing constraints. The pipelined data and command/byte enable bits are then
checked for parity errors.

Address is sent to the Configuration Space where it is decoded. When any of the
channel engines is decoded as the target for a write command, the pre-decoded
address and data is stored in the write buffers, to accelerating PIO access. DMA read
data received is sent to the CEI directly.

The input datapath also performs the conversion from the little endian PCI Bus to
the big endian format of the channel engines. This conversion is “intelligent”, based
on the data object size (byte, half word, word or double word) and whether the data
object is part of a DMA data stream or is PIO or descriptor data. A pseudo-code
description of this conversion is shown in TABLE 4-1.

Finally, the input datapath interfaces to a 64-bit wide Channel Engine Interface, with
DMA transactions on the CEI being either 32- or 64-bits wide. The input datapath
can assemble successive 32-bit words on the PCI Bus into 64-bit words on the CEI.

Chapter 4 Bus Adapter 17

4.3.3 Output Datapath
A more detailed view of the Output Datapath is provided in FIGURE 4-3. All PCI Bus
outputs are registered, to minimize timing constraints. Parity for data and
command/byte enables is generated and output with one PCI clock delay of its
respective data.

Data coming from the CEI is converted from big endian to little endian format, as
described in the input datapath and shown in TABLE 4-1. Addresses are not affected
by the conversion.

FIGURE 4-1 Bus Adapter Block Diagram

Output
Datapath

CEI Control

Input
Datapath

Configuration
Space

Interrupt
Router

PCI Bus Control

PCI Bus Interrupt Pins

to CEIInterruptsCEI Controlfrom CEI

(master & slave)

(master & slave)

18 Peripheral Component Interconnect Input Output Controller • March 1997

Data coming in from the CEI is first multiplexed, depending on which channel
engine has ownership of the CEI. DMA address pointers can be stored in any of two
write address registers, or a single read address registers. Up to three DMA
transactions can be pending or in process: a DMA read, and two DMA writes.

DMA data from the CEI comes in either 32- or 64-bit formats, and is assembled into
a DMA write buffers. Up to two 64-byte DMA write bursts can be pending. The 64-
bit data out of the buffer is multiplexed into the 32-bit PCI Bus width. A 32-bit wide
slave data path is also provided for PIO read operations.

4.3.4 Configuration Space
The PCI Bus Configuration Space is used by power-on software (i.e. OpenBoot) to
probe and initialize system resources. The configuration space is a collection of read-
only and read-write memory locations, all of which can be read by the power-on

FIGURE 4-2 Bus Adapter Input Datapath

PARITY

AD[31:0],

PAR

CHK32

PARITY
OK?

ce_din[31:0]

ce_din[63:32]

ce_saddr[x:0]

C/BE[3:0]_L

Li
ttl

e-
to

-b
ig

en
di

an
 c

on
v

Chapter 4 Bus Adapter 19

software using a configuration cycle. Some fields —Command, Latency Timer, Cache
Line Size— are read-write fields with values visible to the PCI Bus Control logic at
all times. The Status register has several inputs which are used to set and reset
specific bits. Writing the Status register is by clearing bits only. More detailed
information is available in the “PCI Bus Configuration Space” section of Chapter 3,
“Programmer’s Model.” A diagram of the configuration space is shown in
FIGURE 4-4.

The Address Decoders compare the address on the PCI Bus with the Base Address
Registers (one or two) and Expansion ROM Base Address Register, when enabled by
the “Memory Space” bit in the Command Register. The Expansion ROM Base
Address Register has an additional Decode Enable bit within it.

FIGURE 4-3 Bus Adapter Output Datapath

eb_dout[63:0]

et_dout[63:0]

sc_dout[63:0]

cg_dout[63:0]

128 byte
(2x 16x32)

FIFO

ad
dr

 r
eg

 0
ad

dr
 r

eg
 1 PARITY

AD[31:0]

PAR

[63:0]

[31:0]

[31:0]

[31:0] Slave Data

[31:0]

[63:32]

GEN32
B

ig
-t

o-
lit

tle
en

di
an

 c
on

v

rd
 a

dd
r

re
g

20 Peripheral Component Interconnect Input Output Controller • March 1997

If PCIO is in ‘motherboard’ mode, the EBus2 address decoders are enabled on
power-on, for access to boot PROM. The Base Address Registers for the EBus2 resets
to a value depending on the BOOT pins for PROM and 0xF100_0000 for the other
EBus2 devices. These address can be changed by the power-on software, to relocate
either PROM or EBus2. Also, note that in ‘motherboard’ mode, the Memory Space
bit in the Command Register for EBus2 has no effect.

FIGURE 4-4 Configuration Space and Address Decoders

DeviceID VendorID

Status Command

Class Code RevID

Base Address Reg

Base Address Reg (EBus2 Only)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Expansion ROM Base Address

Max_Lat Min_Gnt
Interrupt

Pin
Interrupt

Line

BIST
Header Latency

Timer
Cache Line

SizeType

Command Bits

Latency Timer

Cache Line Size

=?

PCI Addr

EBus2 Decode

=?

=?

PCI Addr

PROM Decode

Other Exp ROM Decodes

Chapter 4 Bus Adapter 21

4.3.5 Interrupt Router
The Interrupt Router directs the channel engines’ interrupts to the appropriate
device pins. In ‘add-in’ mode, PCI devices must use the INTA, B, C and D provided
in the PCI Bus Specification. In PCIO, EBus2 interrupts (only those associated with a
DMA channel) are assigned to INTA# and Ethernet interrupts are assigned to INTB#.
In ‘motherboard’ mode, PCIO has separate interrupt lines for each internal device.

TABLE 4-1 “Intelligent” Little-to-Big Endian Conversion

if PIO_access then
case access_size of

byte:{
pci_bits(31:24) goto channel_bits(7:0)
pci_bits(23:16) goto channel_bits(15:8)
pci_bits(15:8) goto channel_bits(23:16)
pci_bits(7:0) goto channel_bits(31:24)
}

half_word: {
pci_bits(31:16) goto bits(15:0)
pci_bits(15:0) goto bits(31:16)
}

word: pci_bits(31:0 goto channel_bits(31:0)
endcase

else if DMA_access then
if data_stream then {

pci_bits(31:24) goto channel_bits(7:0)
pci_bits(23:16) goto channel_bits(15:8)
pci_bits(15:8) goto channel_bits(23:16)
pci_bits(7:0) goto channel_bits(31:24)
}

else if descriptor then
case access_size of

byte:{ /* not necessary if PCIO does not use */
pci_bits(31:24) goto channel_bits(7:0)
pci_bits(23:16) goto channel_bits(15:8)
pci_bits(15:8) goto channel_bits(23:16)
pci_bits(7:0) goto channel_bits(31:24)
}

half_word: {/* not necessary if PCIO does not use */
pci_bits(31:16) goto bits(15:0)
pci_bits(15:0) goto bits(31:16)
}

word: pci_bits(31:0 goto channel_bits(31:0)
endcase

22 Peripheral Component Interconnect Input Output Controller • March 1997

INTA# becomes enet_irq_l, INTB# is unused, INTC# becomes pport_irq_l and
INTD# becomes fpy_irq_l; interrupts from audio capture are routed to
audio_cap_irq_l while interrupts from audio playback are routed to audio_pb_irq_l.

In ‘motherboard’ mode, interrupts from external EBus2 devices not associated with
DMA channels (e.g. keyboard and mouse) are connected directly to the system
interrupt controller (RIC chip in Ultra AX). In ‘add-in’ mode, these interrupts need
to be combined with INTA#, since all EBus2-related interrupts should be on a single
interrupt pin.

4.3.6 Control Logic
There are two main blocks of control logic, the PCI Bus Control, with a slave and
master portion, and the CEI Control.

4.3.6.1 PCI Bus Control

The slave portion of the PCI Bus Control monitors the PCI Bus for configuration or
memory commands. Based on the address decoding in the configuration space, it
will claim transactions for which PCIO is the target, asserting DEVSEL#. For PIO
reads, it will direct the CEI Control to arbitrate for the CEI and perform a slave read
transaction. When the CEI Control indicates data is ready, the PCI Bus Control will
complete the PCI transactions.

The master portion of the PCI Bus Control initiates transactions on the PCI on behalf
of any of the channel engines. For DMA writes, after the CEI Control has accepted
data into the DMA write buffer, it will direct the PCI Bus Control to start a PCI
transaction. After the transaction is completed, it will issue a transaction
acknowledge back into the CEI for the channel engine to synchronize its data flow.
For DMA reads, after the CEI Controls grants the CEI to a master requesting a read,
it will direct the PCI Bus Control to initiate a PCI read transaction. As data is
returned from the PCI target, it is passed along into the CEI and the waiting master.

4.3.6.2 CEI Control

The CEI Control performs arbitration on the CEI and controls loading of the DMA
write buffers and data flows during DMA reads and slave reads and writes.

The CEI Control treats the CEI as two independent, unidirectional busses: an
adapter-to-channel engine bus carrying slave address, slave write data and DMA
read data, and a channel engine-to-adapter bus, carrying DMA address, slave read
data and DMA write data. Different transactions can proceed at the same time as

Chapter 4 Bus Adapter 23

long as they don’t compete for resources. For example, a DMA write utilizes the
channel engine-to-adapter bus exclusively, while a slave write utilizes the adapter-
to-channel engine bus exclusively, and thus can proceed at the same time.

4.4 PCI Compatibility
PCIO conforms fully with the PCI Bus Specification Revision 2.0. PCIO is a 32-bit
device, with 32-bit data and 32-bit address. All the PCI Bus I/O pads are “socket-
compliant”, having a dedicated power rail that can be either 3.3V or 5V. PCIO can be
used in either 3.3V or 5V systems. The core logic in PCIO requires 5V.

PCIO is a multi-function device comprising network (Ethernet) and a bridge
function (EBus2). There are no provisions for cache coherency built into PCIO.

4.4.1 Little Endian-ness
Like most other PCI Bus devices, PCIO conforms to the little endian byte ordering,
that is, the most significant byte of a 32-bit number is at the highest byte address.

The channel engines within PCIO are big endian. The Bus Adapter performs the
transformation described in TABLE 4-1, taking into account whether the data object is
a data stream, programmed I/O or descriptor.

PCIO supports byte stacking when accessing the PROM and other devices on the
EBus2. The 32-bit word assembled from successive reads of the 8-bit PROM/EBus2
is returned in little endian format. This is still compatible with CPU code fetches,
which are always big endian, since the CPU bridge (U2P) incorporates a fixed byte
lane alignment, converting the data in this case back to big endian.

4.4.2 Commands
PCI Local Bus reference: §3.1.1 and §3.1.2

PCIO responds to a limited number of PCI Bus commands, as summarized in
TABLE 4-2. Note that in determining the number of cache lines to transfer, the ‘Cache
Line Size’ value in the Configuration Space is utilized.

24 Peripheral Component Interconnect Input Output Controller • March 1997

Specifically, PCIO does not initiate Configuration commands, or initiate or
implement Interrupt Acknowledge, Special Cycles, I/O Read or Write or Dual
Address Cycle.

4.4.3 Basic Transfer Control
PCI Local Bus reference: §3.2.1

As an initiator, PCIO will not use IRDY# to force wait states into the transaction (i.e.
PCIO is always ready to either source or receive data). As a target, PCIO will
monitor IRDY# to properly control flow.

4.4.4 Addressing
PCI Local Bus reference: §3.2.2

TABLE 4-2 PCI Bus Commands Implemented and Generated by PCIO

C/BE
[3:0]#

Command Type PCIO as Target PCIO as Initiator

101
0

Configuration Read Implement n/a

101
1

Configuration Write Implement n/a

011
0

Memory Read Treated identically,
generates successive
transactions in the
CEI

Less than one full cache line

111
0

Memory Read Line Exactly one cache line

110
0

Memory Read
Multiple

More than one cache line, or
when the prefetch mechanism
in bridge needs to be activated.

011
1

Memory Write Treated identically,
generates successive
transactions in the
CEI

Less than one cache line, or a
non-integer number of cache
lines

111
1

Memory Write and
Invalidate

One or more full cache lines

Chapter 4 Bus Adapter 25

As a target, PCIO does not implement the I/O address space; memory space
accesses are performed only if linear burst ordering is requested, i.e. AD[1:0]=00. For
any other encoding of AD[1:0], the transaction is disconnected after the first data
phase.

As an initiator, only transactions with linear burst ordering are generated.

4.4.5 Byte Alignment
PCI Local Bus reference: §3.2.2 and 3.2.3

As a target, PCIO recognizes only a limited number of byte enable combinations, as
summarized in Table 4-3. All other transactions will be terminated with target-
aborts, except for configuration cycles, where any byte enable combination is
allowed.

Since successive data phases as a target are treated as individual transactions, byte
enables can change between data phases.

As an initiator, PCIO will generate only byte, half-word and word transactions with
encoding as in Table 4-3. Byte enables will not change between data phases.

4.4.6 Transaction Termination
PCI Local Bus reference: § 3.3.3

Table 4-3

Transaction Type C/BE3# C/BE2# C/BE1# C/BE0#

No-op (ignore) 1 1 1 1

Byte at address 0x00 1 1 1 0

Byte at address 0x01 1 1 0 1

Byte at address 0x02 1 0 1 1

Byte at address 0x03 0 1 1 1

Half word at address 0x00 1 1 0 0

Half word at address 0x02 0 0 1 1

Word at address 0x00 0 0 0 0

Error Any Other

26 Peripheral Component Interconnect Input Output Controller • March 1997

As a target, PCIO will never terminate a transaction with a retry, disconnect or
target-abort, except as noted in Section 4.4.4 (non-linear burst ordering) and
Section 4.4.5 (byte alignment).

As an initiator, PCIO will generate master-initiated terminations based on expiration
of the latency timer and the status of the GNT# signal. Memory Write and Invalidate
commands will ignore the latency timer until a cache line boundary is reached. Note
that the channel engine is not notified of this condition, and the data transfer is
restarted at the next memory address.

PCIO will generate master-abort terminations when no target responds to a
command initiated by PCIO. The master-abort detected bit in the corresponding
function’s configuration space is set, and an error is reported to the channel engine,
which will then generate an interrupt.

PCIO can deal with target retry and disconnect terminations, hiding this conditions
from the channel engines requesting the transactions. Target-abort terminates the
transactions and the channel engine gets notified of the error. There are no timeout
counters or retry counters to recover from targets that do not respond properly.

4.4.7 Fast Back-to-Back
PCI Local Bus reference: §3.4.2

PCIO has the Fast Back-to-Back Capable bit hardwired to ‘1’ in the Status register,
indicating that, as a target, it meets the requirements for performing fast back-to-
back cycles.

4.4.8 Arbitration Parking
PCI Local Bus reference: §3.4.3

PCIO does not require or expects the PCI Bus to be parked so that it is granted to it
when no other agent is requesting it.

At the expense of an extra arbitration latency clock for other agents when the bus is
IDLE, optionally parking PCIO will reduce its arbitration latency to zero clocks.

4.4.9 Latency
PCI Local Bus reference: §3.4.4

Chapter 4 Bus Adapter 27

As a target, PCIO tries to minimize target latency whenever possible. Slave writes
are buffered at the EBus2 channel engine, so that latency should be minimized.
Register writes to internal PCIO locations have relatively fast throughput as well.

Slave reads from internal PCIO locations, although not buffered, are relatively fast,
possibly in the order of four PCI clocks. However, if a slave read starts when a DMA
write transaction is taking place in the CEI, the slave read will be held until the write
finishes, since they both use the same CEI resource. For a 64-byte burst on with a 32-
bit word size, this can be up to 16 clocks.

Note – Version 2.1 of the PCI Specification recommends/requires slave reads
expected to take more than 16 clock cycles to be disconnected (pseudo split
transaction). PCIO does not implement this feature. Moreover, in the case of byte-
stacked reads to slow EBus2 devices, read latencies can be very high.

Slave reads from the EBus2 devices, or slave writes when the write buffers are
backed up, have their latency determined by the timing of the external devices, some
of which are rather slow. In addition, the EBus2 can be busy with a DMA transfer
resulting in additional latency. Yet another source of latency is byte stacking from the
PROM.

As an initiator, PCIO contains internal buffering for each of its internal functions to
minimize the impact of bus latency. PCIO will generate burst of up to 64 bytes
directed, under normal circumstances, to the host bridge (U2P). Assuming a
relatively short delay for the first target-ready, and one data phase per clock
thereafter, Min_Gnt should be set to about 24 clock cycles.

4.4.10 Exclusive Access
PCI Local Bus reference: §3.5

PCIO does not implement or support exclusive access and does not have a LOCK#
signal.

4.4.11 Device Selection
PCI Local Bus reference: §3.6.1

PCIO will assert DEVSEL# when selected as a target at ‘medium’ speed (i.e. two
clocks after assertion of FRAME#). This facilitates design of a synchronous interface,
and does not affect performance, since internal transactions can proceed in parallel
with assertion of DEVSEL#.

28 Peripheral Component Interconnect Input Output Controller • March 1997

29

CHAPTER 5

Channel Engine Interface

The Channel Engine Interface is a modular, bus-independent interconnect intended
to serve as the backbone of the FEPS and PCIO designs.

5.1 Goals
The Channel Engine Interface (CEI) has the following goals:

■ Modular

■ Extensible (number of master and slave ports)

■ Bus-independent and free of external timing constraints, but closely resemble
SBus protocol

■ Interface speed limited by existing ASIC technology

5.2 Terminology/Glossary
Channel Engine Interface (CEI) refers to the interconnect mechanism and protocol
between the Channel Engines and Bus Adapter.

Bus Adapter refers to all the logic between the CEI and the external bus.

Channel Engine refers to each of the individual, self-contained functional blocks in
PCIO: Ethernet and EBus2.

Port refers to the connection of a Channel Engine to the CEI. A Channel Engine can
have master or slave ports, or both.

Double Word refers to a 64-bit word (8 bytes), moved in a single data beat on the CEI.

30 Peripheral Component Interconnect Input Output Controller • March 1997

5.3 Signals
Signals in the CEI are either shared, going from the Bus Adapter to all of the
Channel Engines, or dedicated, going from one Channel Engine to the Bus Adapter
or vice versa.

The signals are summarized in Table 5-1. “Direction” is indicated as seen from the
Channel Engine perspective (i.e. “input” means driven by Bus Adapter and received
by Channel Engine). All signals are active high, with the exception of ce_sack[2:0]_l
and ce_drack[2:0]_l, which follow the SBus encoding.

Table 5-1 Channel Engine Interface Signals

Signal Name Direction Function

General

ce_rst Input, shared Reset, either hardware/power-on of from test
control logic

ce_clk Input, shared Channel Engine interface clock. All signals are
synchronous to this clock. Maximum frequency
is determined by ASIC technology and is at
least 33 MHz + 10%

Datapath

ce_dout[63:0] Output, dedicated Multiplexes master address (32-bit) and
transaction size/type, master data (32/64-bit)
and slave data (32-bit)

ce_din[63:0] Input, shared Multiplexes master data (32/64-bit), slave
address and size and slave data (32-bit)

Slave Port

ce_sel Input, dedicated Slave select, indicates the start of a slave
transaction, remain asserted until the
transaction is completed

ce_sack[2:0]_l Output, dedicated Slave acknowledge, issued by the slave to
indicate acceptance of data or data ready. The
encoding is as follows:
111 — Idle/Wait
110 — Error acknowledge
101 — Byte acknowledge
011 — Word (32-bit) acknowledge
001 — Half-word (16-bit) acknowledge
100, 010, 000 — Reserved

Chapter 5 Channel Engine Interface 31

Master Port

ce_br Output, dedicated Bus request, issued by master port to indicate it
needs to perform a read or write DMA
transaction

ce_bg Input, dedicated Bus grant, issued by the Bus Adapter to a
specific master port when it is ready to perform
a DMA transaction

ce_drack[2:0]_l Input, shared DMA read acknowledge, issued by Bus
Adapter to indicate data is ready during DMA
reads. Data follows ce_drack_l on the next
clock cycle. Encoding is as follows:
111 — Idle/Wait
110 — Error acknowledge
101 — Byte acknowledge
011 — Word (32-bit) acknowledge
001 — Half-word (16-bit) acknowledge
100, 010, 000 — Reserved

ce_dwack Input, shared DMA write acknowledge, issued by Bus
Adapter to indicate it can accept new data from
Channel Engine. Bus Adaptor latches data on
the same clock edge it issues the acknowledge.

ce_memdone Input, dedicated DMA write transaction done, is issued by the
Bus Adapter when a previously posted CEI
transaction actually completes on the external
bus

Error and Exception Reporting

ce_lerr Input, shared Late Error, is issued by Bus Adapter (in SBus
systems) if sb_lerr_ is detected after a DMA
read operation. Masters must monitor ce_lerr
exactly two clock cycles after each n0n-idle
ce_drack_l

ce_dwerr Input, shared DMA Write Error, is issued by the Bus Adapter
together with ce_memdone to indicate sb_lerr_
was detected or a bus error occurred during a
DMA write transaction

ce_perror Input, shared Parity Error, is issued by the bus adapter
during slave port write access or a DMA read
transaction, to indicate a parity error on the
external bus.

ce_int Output, dedicated Interrupt(s): number varies by Channel Engine

Table 5-1 Channel Engine Interface Signals (Continued)

Signal Name Direction Function

32 Peripheral Component Interconnect Input Output Controller • March 1997

The data busses ce_din[63:0] and ce_dout[63:0] are used to encode address, data and
transaction type, during both slave and master transactions. Table 5-2 shows the
encoding of signals for slave transactions. All slave transactions are 32-bit or less.

During slave accesses, the 28-bit address space per channel engine is qualified by
slave select (ce_sel). Slave ports can use as many or as few of the slave address bits
as necessary to further decode addresses within their space.

Table 5-3 shows the encoding of signals for DMA transactions. DMA transactions use
either 32- or 64-bit data paths.

Table 5-2 Slave Access Encoding of ce_din and ce_dout

Signal Slave Encoding Function

ce_dout[31:0] slave_dout[31:0] Slave write data

ce_din[31:0] slave_din[31:0] Slave read data

ce_din[63] slave_rd Transfer direction:
0 — slave write
1 — slave read

ce_din[62:60] slave_size[2:0] Transfer size:
000 — Word transfer
001 — Byte transfer
010 — Half-word transfer
011, 1x× — Reserved

ce_din[59:32] slave_addr[27:0] Slave address, 28-bit address space

ce_dout[63:32] Reserved Unused

Table 5-3 DMA Transaction Encoding of ce_din and ce_dout

Signal DMA Encoding Function

Address Phase

ce_dout[31:0] dma_addr[31:0] DMA (virtual) address

ce_dout[63] dma_rd Transfer direction:
0 —DMA write (Channel Engine to Memory)
1 — DMA read (Memory to Channel Engine)

Chapter 5 Channel Engine Interface 33

5.4 Transactions

5.4.1 Slave Write
Slave Write transactions are shown in FIGURE 5-1. The first transaction shows the
slave acknowledge (ce_sack[2:0]_l) valid with the proper port size the clock edge
following slave select (ce_sel). Data is clocked in by the slave during the same edge
that port_size is asserted.

ce_dout[62:60] dma_size[2:0] Transfer size:
000 — Word transfer
001 — Byte transfer
010 — Half-word transfer
011 — Extended (64-bit) transfer
100 — Four word burst (16 bytes)
101 — Eight word burst (32 bytes)
110 — Sixteen word burst (64 bytes)
111 — Two word burst (8 bytes)

ce_dout[59:57] dma_etsize[2:0] Extended transfer size, valid when
dma_size=011:
011 — One double word burst (8 bytes)
100 — Two double word burst (16 bytes)
101 — Four double word burst (32 bytes)
110 — Eight double word burst (64 bytes)
111 — Reserved, place holder for 128 bytes
000, 001, 010 — Reserved

ce_dout[56] dma_desc Descriptor traffic. Issued by Channel Engine to
differentiate between descriptor and DMA data
transfers:
0 — DMA data
1 — Descriptor

ce_dout[55:32]
ce_din[63:0]

Reserved Unused

Data Phase

ce_din[63:0] dma_din[63:0] DMA data in, 32- or 64-bit wide

ce_dout[63:0] dma_dout[63:0] DMA data out, 32- or 64-bit wide

Table 5-3 DMA Transaction Encoding of ce_din and ce_dout (Continued)

Signal DMA Encoding Function

34 Peripheral Component Interconnect Input Output Controller • March 1997

The second transaction shows the slave asserting wait (ce_sack[2:0]_l=111) for two
clocks. Transfer direction, size and address remain stable until the slave
acknowledges the port size and clocks in the data.

Slave write only use the ce_din[63:0] bus. Therefore, there is no need for the Bus
Adapter to arbitrate for the CEI before it can assert slave select (ce_sel) and drive
address and data, since the only other transaction that can be going on
simultaneously is a DMA write, which only uses the ce_dout]63:0] bus. Channel
Engines can be designed so that they can respond to slave writes even when a DMA
write is in progress.

Note – The Ethernet Channel Engine currently requires that “data in” remain valid
during PIO writes to the ERX fifo for one clock after deassertion of ce_sel.

5.4.2 Slave Read
Slave Read transactions are shown in FIGURE 5-2. The first transaction shows the
slave acknowledge (ce_sack[2:0]_l) valid with the proper port size the clock edge
following slave select (ce_sel). Data is valid for the bus adapter during the following
clock edge.

On the second transaction, the slave asserts wait acknowledge for one clock cycle,
then acknowledges the port size and presents the data a clock cycle after that.

FIGURE 5-1 Slave Write Transactions

valid slave address

valid size

data in

valid slave address

valid size

data in

port size port sizewait = 111

ce_clk

ce_sel

ce_din[63] (read)

ce_din[62:60] (size)

ce_din[59:32] (addr)

ce_sack[2:0]_l

ce_din[31:0]

Chapter 5 Channel Engine Interface 35

Note – The Ethernet Channel Engine currently requires that ce_din[63] (read) be
valid one clock cycle before ce_sel is asserted. Otherwise, slave read data is latched
at the wrong time.

5.4.3 DMA Write (Channel Engine to Memory)
FIGURE 5-3 shows a DMA write transaction using 32-bit wide data. The master port
present the DMA address, direction and size together with its internal bus request.
Once the channel engine interface is granted, the master deasserts its bus request,
and bursts the data to the bus adapter. The transaction terminates with the last data
beat, and the arbiter deasserting bus grant.

The Bus Adapter can optionally extend the cycle by withholding ce_dwack for each
of the data phases.

FIGURE 5-2 shows a DMA write transaction using 64-bit extended mode. The size
field (ce_dout[62:60]) is set to 011, and the extended size information is presented on
etsize (ce_dout[59:57]). During the data phase, ce_dout[63:0] carries the transfer
data, DMA Read (Memory to Channel Engine).

A DMA Read transaction is shown in FIGURE 5-5. After the bus grant, the Bus
Adapter issues wait acknowledge (ce_drack[2:0]_l=111) until data is received from
the external bus. Data for the channel engine follows the port acknowledge on the
next clock cycle.

FIGURE 5-2 Slave Read Transactions

valid size

valid slave address valid slave address

valid size

port size port sizewait = 111

data out data out

ce_clk

ce_sel

ce_din[63] (read)

ce_din[62:60] (size)

ce_din[59:32] (addr)

ce_sack[2:0]_l

ce_dout[31:0]

36 Peripheral Component Interconnect Input Output Controller • March 1997

For 64-bit Extended Mode, size and etsize are set appropriately, and timing is the
same as 32-bit mode.

DMA reads are interlocked with the external bus. The CEI will not be granted until
the external bus is granted. Slave transactions may occur while request (ce_br) is
asserted but the bus as not been granted (i.e. ce_bg deasserted). During this time,
Channel Engine must be able to respond to slave accesses to avoid deadlocks.

Furthermore, a rerun on the external bus, although not exposed to the CEI, would
result in long delays between the bus grant (ce_bg), and the first data acknowledge
(ce_drack_l=port size). During this time, the external bus is relinquished by the Bus
Adapter, and one or more slave transactions may occur, even though bus grant
(ce_bg) continues to be asserted.

FIGURE 5-3 DMA (Master) Write Transaction: 32-bit - 16-byte burst

valid size = 100

valid etsize = don't care

valid desc

don't care

valid dma address data 0 data 1 data 2 data 3

don't care

don't care

don't care

don't care

dont care

ce_clk

ce_br

ce_bg

ce_dout[63] (read)

ce_dout[62:60] (size)

ce_dout[59:57] (etsize)

ce_dout[56] (desc)

ce_dout[55:32]

ce_dout[31:0]

ce_dwack

Chapter 5 Channel Engine Interface 37

5.5 Data Ports
For all master and slave transactions, data is replicated in all logical data ports. For
slave byte accesses, data is replicated in bits [31:24], [23:16], [15:8] and [7:0]; for slave
half word accesses, data is replicated in bits [31:16] and [15:0].

For master byte accesses, data is replicated in bits [31:24], [23:16], [15:8] and [7:0]; for
master half word accesses, data is replicated in bits [31:16] and [15:0].

When driving data, both Bus Adapter and Channel Engine must replicate it into all
data ports as outlined above. When receiving data, both Bus Adapter and Channel
Engine can select any of the available data ports.

FIGURE 5-4 DMA (Master) Write Transaction: Extended Mode - 32-byte burst

valid size = 011

valid etsize = 101

valid desc

don't care

valid dma address data 0 data 1 data 2 data 3

data 0 data 1 data 2 data 3

data 0 data 1 data 2 data 3

data 0 data 1 data 2 data 3

data 0 data 1 data 2 data 3

data 0 data 1 data 2 data 3

ce_clk

ce_br

ce_bg

ce_dout[63] (read)

ce_dout[62:60] (size)

ce_dout[59:57] (etsize)

ce_dout[56] (desc)

ce_dout[55:32]

ce_dout[31:0]

ce_dwack

38 Peripheral Component Interconnect Input Output Controller • March 1997

5.6 Error Handling & Reporting

5.6.1 Slave Transactions

5.6.1.1 Parity

The Bus Adaptor checks for data (and address, in PCI) parity during slave writes.
Parity errors are optionally reported on the external bus.

FIGURE 5-5 DMA (Master) Read Transaction: 32-bit - 8-byte burst

valid size = 111

valid etsize = don't care

valid desc

don't care

don't care

don't care

don't care

don't care

data in 0 data in 1

wait = 111 port size

valid dma address don't care

port size

don't care

ce_clk

ce_br

ce_bg

ce_dout[63] (read)

ce_dout[62:60] (size)

ce_dout[59:57] (etsize)

ce_dout[56] (desc)

ce_dout[55:32]

ce_dout[31:0] (addr)

ce_din[31:0]

ce_drack[2:0]_l

ce_perror

Chapter 5 Channel Engine Interface 39

FIGURE 5-5 shows how the parity error is reported to the channel engine. ce_perror
must be asserted in the cycle following the error data, and remain asserted until one
clock after the port acknowledge. In the first transaction shown, the parity error is
detected during the first clock cycle with valid data. During the second transaction,
the parity error does not get detected until the second clock cycle with valid data. In
both cases, ce_perror remains asserted until one clock cycle after the port size
acknowledge.

The channel engine is responsible for reporting the parity error back to the system
via an interrupt, and logging the error in a status register. The transaction itself can
be ignored or completed, but it must be terminated correctly.

PCI address parity is reported using the PCI SERR# signal. No slave cycle is
performed.

5.6.1.2 Late Error

There is no concept of Late Error during slave cycles on the Channel Engine
Interface. The Bus Adapter should not generate Late Error.

FIGURE 5-6 Reporting a parity error during a slave write

valid slave address

valid size

data in

valid slave address

valid size

data in

port size port sizewait = 111

ce_clk

ce_sel

ce_din[63] (read)

ce_din[62:60] (size)

ce_din[59:32] (addr)

ce_sack[2:0]_l

ce_din[31:0]

ce_perror

40 Peripheral Component Interconnect Input Output Controller • March 1997

5.6.1.3 Access Error and Bus Sizing

Error acknowledge (ce_sack[2:0]_l=110) can be used by the Channel Engine to
indicate errors back to the Bus Adapter. The Bus Adapter will then pass along the
error to the external bus, via an error acknowledge in SBus or System Error in PCI.
The Channel engine must also report access errors to the systems via an interrupt
and log the error in a status register.

Access size errors, for example when a word-only register is accessed as a byte, can
be acknowledged to the Channel Engine Interface, or error-acknowledged. Bus
sizing is not supported in the Channel Engine Interface.

Access to invalid memory locations can be ignored and acknowledged, or error-
acknowledged.

No time-out mechanism exists in the Channel Engine Interface. A selected slave
must respond promptly with a port size acknowledge or an error acknowledge.

5.6.2 DMA Transactions

5.6.2.1 Parity

The Bus Adapter checks data parity during DMA reads only. Parity errors detected
are not reported on the external bus, but are sent along to the Channel Engine one
clock after the port acknowledge. Timing is like in FIGURE 5-5.

Errors are reported back to the system by the Channel Engine via an interrupt, and
logged in a status register.

5.6.2.2 Late Error

On CEI, Late Errors encountered during DMA reads are passed along to the Channel
Engine, two clocks after the port size acknowledge. During DMA writes, the Bus
Adaptor does not assert ce_memdone until two clocks after the last port size
acknowledge. If a Late Error occurs, it will asset ce_dwerr together with
ce_memdone.

There is no Late Error in PCI.

Chapter 5 Channel Engine Interface 41

5.6.2.3 Bus Errors

During DMA reads, bus errors are sent to the Channel Engine as error-
acknowledges. During DMA writes, any bus error encountered is reported via the
ce_dwerr mechanism described above.

5.6.2.4 Bus Sizing

Bus Adapter are not required to support bus sizing on the external bus.

5.7 Arbitration
The CEI assumes all Channel Engines and Bus Adapter cooperate with each other
and function correctly. Since there are no signals that can be driven by more than one
master, there is no possibility of collisions. However, if more than one Channel
Engine believes it owns the CEI at any one time, things will become utterly
confused.

5.8 Design Guidelines

5.8.1 Timing
All signals must be synchronous to the Channel Engine Interface clock (ce_clk). The
nominal clock cycle is 30 nS.

5.8.1.1 Cycle Time Budget Allocation

ce_clk to valid signal: maximum 15 nS, measured at the driving end, with a 4×
standard load

valid signal setup time to ce_clk: minimum 10 nS, measured at the receiving end,
assuming a standard driver (1×)

42 Peripheral Component Interconnect Input Output Controller • March 1997

5.8.2 Signal Loading
One standard load for ce_din and shared signals, up to two standard loads for
dedicated signals.

Dedicated signals are driven by standard drivers. ce_din and shared signals are
driven by “strong” drivers.

43

CHAPTER 6

Ethernet Channel Engine

6.1 Introduction

6.1.1 Overview
The Ethernet Channel provides the network interface functionality for two highly
integrated combo chips:

■ FEPS — SBus version

■ PCIO — PCI version

FIGURE 6-1 shows the positioning of the Ethernet Channel in the overall FEPS
architecture. The following brief description is for the Ethernet channel of FEPS. It is
applicable to the Ethernet channel of PCIO with small changes.

The Ethernet Channel implements two major functions:

■ Provides the Media Access Control (MAC) function for a 10/100Mbps CSMA/CD
protocol based network

■ Provides a high performance two-channel DVMA host interface between the
MAC and the PCI Bus

44 Peripheral Component Interconnect Input Output Controller • March 1997

FIGURE 6-1 FEPS Block Diagram

SBUS

SBus Adapter
(SBA)

CE Interface

Ethernet
Channel

SCSI
Channel

Parallel
Port

Channel

SCSI Parallel PortMII

Chapter 6 Ethernet Channel Engine 45

6.1.2 Major Components

6.1.2.1 Functional Blocks

The Ethernet Channel is comprised of five major blocks:

MAC Core

The MAC Core implements the IEEE 802.3 MAC protocol for 10/100Mbps CSMA/
CD networks.

MIF

The Management Interface block implements the management portion of the MII
interface to an external transceiver, as defined in the IEEE 802.3 MII specification.

ETX

The Ethernet Transmit block provides the DMA Engine for transferring frames from
the host memory to the MAC. It contains a local buffer of 2K bytes for rate
adaptation between the available bandwidth on the PCI Bus and on the network.

ERX

The Ethernet Receive block provides the DMA Engine for transferring frames from
the MAC to the host memory. It contains a local buffer of 2K bytes for rate
adaptation between the available bandwidth on the network and on the PCI Bus.

SEB

The Shared Ethernet Block contains common functions that are shared between the
ETX and ERX blocks. It also separates the DMA data path from the Programmed IO
data path.

6.1.2.2 Interfaces

The Ethernet Channel interfaces to the rest of FEPS via two exposed interfaces:

46 Peripheral Component Interconnect Input Output Controller • March 1997

Channel Engine Interface (CEI)

The CEI connects the Ethernet Channel to the SBA. This interface is defined to be
identical for all three channels in FEPS.

Media Independent Interface (MII)

The MII connects the Ethernet Channel to an external Ethernet transceiver. It
conforms with the IEEE 802.3u defined MII.

6.1.3 Features List
■ Conforms to ISO/IEC 8802-3 and IEEE 802.3u standards

■ Programmable network parameters for standard’s extension and/or private
applications

■ Supports full duplex operation

■ Flexible transceiver choice via the MII

■ Extensive support for network management

■ Local on-chip buffers (FIFOs) of 2K bytes in each direction

■ Host packet management via descriptor rings

■ TCP checksum support in hardware

■ Transmit “gather” function

■ Programmable first byte alignment on receive

■ Support for 32-bit or 64-bit PCI Bus, maximum of 64-byte bursts

6.2 Functional Description
The following detailed description is for the Ethernet channel of the PCIO chip.

Chapter 6 Ethernet Channel Engine 47

6.2.1 Overview
The Ethernet Channel is a dual-channel intelligent DMA controller on the system
side, and an IEEE 802.3 MAC on the network side. It was designed as a high
performance full duplex device, allowing for simultaneous transfers of data from/to
host memory to/from the “wire”. The MAC portion of the Ethernet Channel is
compliant with the IEEE 802.3u (100BASE-T) standard.

Packets scheduled for transmission are transferred over the PCI Bus into a local
transmit FIFO, and are later transferred to the TX_MAC core for protocol processing
and transmission over the medium. A programmable transmit threshold is provided
to enable the transmission of the frame. The reverse process takes place in the
receive path. Packets received from the medium are processed by the RX_MAC,
loaded into the receive FIFO, and are later transferred to the host memory over the
PCI Bus. The receive threshold for data transfers is 128 bytes.

At the device driver level, the user deals with transmit and receive descriptor ring
data structures for posting packets and checking status. In the transmit case, packets
may be posted to the hardware in multiple buffers (descriptors), and the transmit
DMA engine will perform “data gather”. In the receive case, the receive DMA
engine will store an entire packet in each buffer that was allocated by the host. “Data
scatter” is not supported, but instead a programmable first byte alignment offset
within a burst is implemented.

For TCP packets, hardware support is provided for TCP checksum computation. On
transmit, it is assumed that the entire packet is loaded into the local FIFO before its
transmission begins. The checksum is computed “on-the-fly” while the packet is
being transferred from the host memory into the local FIFO. The checksum result is
then “stuffed” into the appropriate field in the packet, and the transmission of the
frame begins. On receive, checksum is computed on the incoming data stream from
the MAC core, and the result is posted to the device driver as part of the packet
status in the descriptor.

6.2.2 Hardware Architecture
FIGURE 6-2 shows the top level architecture of the Ethernet Channel.

The architecture was defined to achieve the following goals:

■ High Throughput:

Full duplex operation with no hardware bottlenecks in the data path. The
throughput is limited either by the available bandwidth on the PCI Bus or by the
maximum throughput on the network. The data path is optimized to achieve
maximum utilization of the PCI Bus bandwidth

■ Minimal software Overhead:

48 Peripheral Component Interconnect Input Output Controller • March 1997

■ One or less interrupts per packet

■ Non-restricted transmit “data gather” in hardware

■ Programmable first byte alignment within a burst on receive

■ Hardware support for TCP checksum

■ Modularity:

■ Leverages from existing designs (MAC core)

■ Allows future design leveraging — the functional blocks are partitioned by
well defined functions, that interact via well defined interfaces

6.2.2.1 Functional Blocks

The Ethernet Channel is comprised of five major blocks:

MAC Core

The MAC Core implements the IEEE 802.3 MAC protocol for 10/100Mbps CSMA/
CD networks. It consists of four major functional modules:

Host Interface Buffer (HIB)
■ Implements the Programmed IO interface between the SEB and the MAC core

Transmit MAC (TX_MAC)
■ Implements the IEEE 802.3 transmit portion of the protocol

■ Implements the slave interface handshake between the ETX and TX_MAC for
frame data transfers

■ Performs the synchronization between the system clock domain and the transmit
media clock domain in the transmit data path

Chapter 6 Ethernet Channel Engine 49

FIGURE 6-2 Ethernet Channel Engine

MAC Core

Rx_MAC

XIF

HIB

Tx_MAC

Synch

FIFO

ETX ERX

SEB

MII

CEI

Slave Bus

Slave Bus

64 64

1616

16 16

88

MIF

mdc mdio0 mdio1

Synch

FIFO

50 Peripheral Component Interconnect Input Output Controller • March 1997

Receive MAC (RX_MAC)
■ Implements the IEEE 802.3 receive portion of the protocol

■ Implements the slave interface handshake between the ERX and RX_MAC for
frame data transfers

■ Performs the synchronization between the system clock domain and the receive
media clock domain in the receive data path

Transceiver Interface (XIF)
■ Implements the MII interface protocol (excluding the Management Interface)

■ Performs the nibble-to-byte and byte-to-nibble conversion between the protocol
engine and the MII

MIF

The Management Interface (MIF) implements the management portion of the MII
protocol. It allows the host to program and collect status information from two
external transceivers, connected to the MII. The MIF supports three modes of
operation:

”Bit-Bang” Mode
This mode of operation provides maximum flexibility with minimum hardware
support for the serial communication protocol between the host and the transceivers.
The actual protocol is implemented in software, and the interaction with the
hardware is done via three one-bit registers: data, clock and output_enable. Each
read/write operation on a transceiver register would require approximately 150
software instructions by the host.

”Frame” Mode
This mode of operation provides a much more efficient way of communication
between the host and the transceivers. The serial communication protocol between
the host and the transceivers is implemented in hardware, and the interaction with
the software is done via one 32-bit register (Frame Register). When the software
wants to execute a read/write operation on a transceiver register, all it has to do is
load the Frame Register with a valid instruction (”frame”), and poll the Valid Bit for
completion. The hardware will detect the instruction, serialize the data, execute the
serial protocol on the MII Management Interface and set the Valid Bit to the
software.

Chapter 6 Ethernet Channel Engine 51

Polling Mode
As defined in the IEEE 802.3u MII Standard, a transceiver shall implement at least
one status register that will contain a defined set of essential information needed for
basic network management. Since the MII does not include an interrupt line, a
polling mechanism is required for detecting a status change in the transceiver. In
order to reduce the software overhead, the above mentioned polling mechanism has
been implemented in hardware. When this mode of operation is enabled, the MIF
will continuously poll a specified transceiver register, and generate a maskable
interrupt when a status change is detected. Upon detection of an interrupt, the
software can read a Local Status Register that will provide the latest contents of the
transceiver register, and an indication which bits have changed since it was last read.
This mode of operation can only be used when the MIF is in the “Frame Mode”.

ETX

The Ethernet Transmit (ETX) block provides the DMA Engine for transferring frames
from the host memory to the TX_MAC. FIGURE 6-3 shows the block diagram of the
Transmit DMA Channel.

Following are the major functional modules:

SA I/F
This module implements the relevant subset of the Channel Engine Interface (CEI)
handshake between the ETX and the PCI Bus Adaptor. It contains two sub modules:
one for the master (DMA) and the other for the slave (PIO) protocols.

CSMC
Contains the Command, Status, Mask and Configuration registers for the ETX
channel.

SMM
The ETX System Memory Manager manages the transmit host memory data
structures (one descriptor ring of up to 256 data buffers).

Chaining
This module implements the “gather” function of transmit buffers. Proper byte
alignment is performed to ensure that data bytes at multiple buffers boundary,
belonging to the same packet, are packed sequentially as one segment in the
transmit FIFO. The “chaining” of transmit buffers is done on-the-fly during packet
data transfer between the PCI Bus and the transmit FIFO.

52 Peripheral Component Interconnect Input Output Controller • March 1997

Checksum
This module provides the hardware support for TCP checksum computation in the
transmit data path. This optional function can be enabled or disabled on a per packet
basis through a descriptor control bit. If the function is enabled, the software has to
provide in the descriptor a “start offset” and a “stuff offset.” For proper operation of
the hardware, it is assumed that the entire packet is loaded into the transmit FIFO
before its transmission is enabled. There is no restriction on the number of buffers
(descriptors) per a packet, as long as the entire frame can fit in the transmit FIFO (2K
bytes). Also, it is assumed that the software will initialize the TCP checksum field in
the TCP packet to compensate for the fact that the hardware calculates the checksum
over the actual IP header, rather than the pseudo-IP header. The 16-bit TCP
checksum is computed on-the-fly during packet data transfer between the PCI Bus
and the transmit FIFO, starting from the “start offset” until the end of the packet.
The result is then “stuffed” at the “stuff offset.”

TxFIFO
The TxFIFO acts as a local buffer for rate adaptation between the available
bandwidth on the PCI Bus and on the network. It is large enough (2K bytes) to be
able to buffer an entire maximum size standard IEEE 802.3 frame, but it can also
hold an unrestricted number of smaller frames. This guarantees minimal
performance (no underruns) if the available bandwidth on the PCI Bus is less than
the available bandwidth on the network. On the other hand, it guarantees maximum
throughput (keeps up with the “wire speed”) if the bandwidth situation is reversed.
The logical configuration of the transmit buffer can be either 512x4Bytes or
256x8Bytes, depending on the PCI Bus width. The physical configuration of the
transmit buffer is four banks of 128x33bits.

FIFOIn
■ Performs the multiplexing of all the data sources to the TxFIFO

■ Generates the control signals for loading the TxFIFO

■ Generates the frame delimiters (tags) to the TxFIFO

FIFOOut
■ Performs “unpacking” of 64-bit data from the TxFIFO to 16-bit data to the

TX_MAC

■ Generates the tag lines to the TX_MAC

FMM
The FIFO Memory Manager (FMM) module manages the transmit FIFO data
structures and provides the following functionality to the transmit DMA engine:

■ Makes the dual-port memory core look like a “virtual FIFO”

Chapter 6 Ethernet Channel Engine 53

■ Generates “Write” and “Read” pointers to the memory core

■ Allows for simultaneous loading and unloading of the TxFIFO

■ Generates the TxFIFO status flags

■ Maintains a “Shadow Write Pointer” for checksum “stuffing”

■ Maintains a “Shadow Read Pointer” for frame re-transmission due to a collision
on the network

■ Maintains a Packet Counter, a Threshold Register and a Packet Byte Counter for
enabling transmission of a frame

Load Control State Machine
This state machine controls the transfer of packet data buffers from the host memory
to the TxFIFO. It monitors the PCI Bus DVMA process and controls the execution of
the following functions:

■ Processing of transmit descriptors

■ Execution of the PCI Bus burst transfers

■ Loading of the packet data and checksum (if enabled) into the FIFO

■ Loading of the control/status word into the FIFO at the end of a frame

■ Incrementing the FIFO Write Pointer

■ Manipulation of the Shadow Write Pointer (loading of the checksum and pointer
restoration)

Unload Control State Machine
This state machine controls the transfer of packet data from the TxFIFO to the
TX_MAC.

■ Generates the read control signal to the FIFO

■ Executes the master-slave handshake between the DMA engine and the TX_MAC

■ Increments the FIFO Read Pointer

■ Manipulates the Shadow Read Pointer (”tx_retry” due to a collision on the
network)

ERX

The Ethernet Receive (ERX) block provides the DMA Engine for transferring frames
from the RX_MAC to the host memory. FIGURE 6-4 shows the block diagram of the
Receive DMA Channel.

Following are the major functional modules:

54 Peripheral Component Interconnect Input Output Controller • March 1997

Path
■ Implements the relevant subset of the Channel Engine Interface (CEI) between the

ERX and the SEB

■ Performs alignment of the first word of a frame within an PCI Bus burst

■ Performs the 32/64-bit data steering

FIGURE 6-3 Transmit DMA Channel

SA I/F

SMM

Checksum

Chaining

FIFO

CSMC

Load
Control

S.M.
FMM

Unload
Control

S.M.

Tx_FIFO

FIFO

PIO Bus

CE I/F

S
ha

re
d

w
/E

R
X

S
E

B
↔

 E
T

X
 I/

F

PIO Bus

W
rit

e
A

dd
r

R
ea

d
A

dd
r

32/64

32

32/64

32/64

32/64 64

32

3232

Data

Tag

16

4

Control

2

T
x_

M
A

C
 I/

IF

In Out

(128 x 33)

(128 x 33)

(128 x 33)

(128 x 33)

Chapter 6 Ethernet Channel Engine 55

Slave
Contains the Command, Status, Mask and Configuration registers for the ERX
channel, as well as the Slave State Machine.

Checksum
This module provides the hardware support for TCP checksum computation on the
receive data path. This optional function is always enabled. The 16-bit checksum
value is computed on the entire frame, starting from a programmable 16-bit aligned
“start offset”. The computation is performed on-the-fly during packet data transfer
between the RX_MAC and the receive FIFO. The result is appended to the end of the
frame in the receive FIFO, and is later posted to the device driver as part of the
frame status in the receive descriptor. If the software decides to make use of this
information, it must compensate/adjust for the additional bytes that have been
included in the TCP checksum by subtracting them, and/or for the IP fragmentation
by adding up the partial checksums.

RxFIFO
The RxFIFO acts as a local buffer for rate adaptation between the available
bandwidth on the network and on the PCI Bus. It is large enough (2K bytes) to be
able to receive an entire maximum size standard IEEE 802.3 frame, but it can also
hold an unrestricted number of smaller frames. This guarantees minimal
performance (a frame is guaranteed to be received “once in a while”) if the available
bandwidth on the PCI Bus is less than the available bandwidth on the network. On
the other hand, it guarantees maximum throughput (keeps up with the “wire
speed”) if the bandwidth situation is reversed. The logical configuration of the
receive buffer can be either 512x4Bytes or 256x8Bytes, depending on the PCI Bus
width. The physical configuration of the receive buffer is four banks of 128x33bits.

FIFOIn
■ Performs alignment of the first byte of a frame within a 32/64-bit word that is

loaded into the RxFIFO

■ Performs “packing” of 16-bit data from the RX_MAC to 32-bit data that is loaded
into the RxFIFO

■ Performs the multiplexing of all the data sources to the RxFIFO

■ Generates the control signals for loading the RxFIFO

■ Generates the frame delimiters (tags) in the RxFIFO

FMM
The FIFO Memory Manager (FMM) module manages the receive FIFO data
structures and provides the following functionality to the receive DMA engine:

■ Makes the dual-port memory core look like a “virtual FIFO”

56 Peripheral Component Interconnect Input Output Controller • March 1997

■ Generates “Write” and “Read” pointers to the memory core

■ Allows for simultaneous loading and unloading of the RxFIFO

■ Generates the RxFIFO status flags

■ Maintains a “Shadow Write Pointer” for recovering from certain receive errors
(frame fragments)

■ Maintains a Packet Counter for enabling frame transfers from the RxFIFO to the
host memory

Load Control State Machine
This state machine controls the transfer of packet data from the RX_MAC to the
RxFIFO.

■ Generates the load control signal to the FIFO

■ Executes the master-slave handshake between the DMA engine and the RX_MAC

■ Increments the FIFO Write Pointer

■ Manipulates the Shadow Write Pointer (”early rx_abort”)

ERX Unload
This module controls the transfer of packet data from the RxFIFO to the host
memory.

■ Initiates CEI transactions

■ Increments the FIFO Read Pointer

■ Recovers from certain error conditions detected by the RX_MAC (”late rx_abort”)

■ Monitors the PCI Bus DVMA process

■ Processing of receive descriptors

■ Execution of the CEI burst cycles

■ Manages the receive host memory data structures (one descriptor ring of up to
256 data buffers)

SEB

This block contains common functions that are shared between the ETX and ERX
blocks. It performs the first level arbitration between the receive and transmit DMA
channels for access to the PCI Bus, and provides one common interface between the
Ethernet Channel and the PCI Bus Adapter. The arbitration mechanism is “Round-
Robin”.

Chapter 6 Ethernet Channel Engine 57

6.2.2.2 Interfaces and Data Paths

The Ethernet Channel contains seven defined interfaces:

FIGURE 6-4 Receive DMA Channel

R
x_

M
A

C
 I/

F

S
E

B
↔

 E
R

X
 I/

F

Slave

PIO Bus

PIO Bus

Rx_FIFO

FIFO

FMM

Checksum

Load
Control

S.M.

Unload
Control

S.M.

DMA Access
Control
S.M.

SA I/F

W
rit

e
A

dd
r

R
ea

d
A

dd
r

32/64

32

32/64 16

2

Data

Control

Tag

S
ha

re
d

w
/E

T
X

ERX_Unload

CE I/F In

(128 x 33)

(128 x 33)

(128 x 33)

(128 x 33)

58 Peripheral Component Interconnect Input Output Controller • March 1997

Channel Engine Interface (CEI)

This exposed interface connects the Ethernet Channel to the PCI Bus Adaptor. The
CEI is defined to be identical for both channels in PCIO, and it follows the DVMA
and the Programmed IO protocol on the PCI Bus. The CEI data path is defined to be
32 or 64 bits wide in each direction, and it scales with the width of the PCI Bus.

SEB ↔ ETX Interface

This non-exposed interface connects the transmit DMA channel (ETX) to the Shared
Ethernet Block (SEB). This interface implements the “DVMA Read” subset of the
CEI. The data path is defined to be 32 or 64 bits wide, and it scales with the width of
the PCI Bus.

SEB ↔ ERX Interface

This non-exposed interface connects the receive DMA channel (ERX) to the Shared
Ethernet Block (SEB). This interface implements the “DVMA Write” subset of the
CEI. The data path is defined to be 32 or 64 bits wide, and it scales with the width of
the PCI Bus.

PIO Bus Interface

This non-exposed interface connects the ERX, the ETX and the MAC core to the SEB
for Programmed IO cycle execution. This interface implements the Programmed I/O
(”slave”) subset of the CEI. The data path is defined to be always 32 bits wide in
each direction.

ETX ↔ TX_MAC Interface

This non-exposed interface connects the ETX to the TX_MAC for packet data
transfer from the transmit FIFO to the network. The data path is defined to be 16 bits
wide.

ERX ↔ RX_MAC Interface

This non-exposed interface connects the ERX to the RX_MAC for packet data
transfer from the network to the receive FIFO. The data path is defined to be 16 bits
wide.

Chapter 6 Ethernet Channel Engine 59

Media Independent Interface (MII)

This exposed interface connects the Ethernet Channel to an external Ethernet
transceiver. It conforms with the IEEE 802.3u defined MII. The MII data path is
defined to be 4 bits wide in each direction. The MII management interface is a I-
directional serial interface. The Ethernet Channel implements two management
interfaces.

6.2.2.3 Clock Domains

The Ethernet Channel contains three completely asynchronous clock domains.
FIGURE 6-5 shows the clock domain boundaries.

System Clock Domain

The bulk of the logic in the Ethernet Channel is driven off this clock. It is sourced by
the System Bus and is defined to be in the range of 16.67 MHz through 33.33 MHz.

Transmit Clock Domain

This clock is used to drive the Transmit Protocol Engine in the MAC core. It is
sourced by the MII and has the operating frequency of 2.5/25 MHz 100ppm. The
2.5/25 MHz version of this clock (tx_nclk) is used for byte-to-nibble conversion of
the data stream to the MII and for synchronization of the asynchronous signals from
the MII (CRS and COLL). The 1.25/12.5 MHz “divide-by-two” version of this clock
(tx_bclk) is used for transmit protocol processing and state machine operation.

Receive Clock Domain

This clock is used to drive the Receive Protocol Engine in the MAC core. It is
sourced by the MII and has the operating frequency of 2.5/25 MHz 100ppm. The
2.5/25 MHz version of this clock (rx_nclk) is used for strobing in the packet data
from the MII and for nibble-to-byte conversion of the incoming data stream. The
1.25/12.5 MHz “divide-by-two” version of this clock (rx_bclk) is used for receive
protocol processing and state machine operation.

60 Peripheral Component Interconnect Input Output Controller • March 1997

FIGURE 6-5 Ethernet Channel Clock Domains

Receive

System

SEB

ERXETX

HIB

MAC Core

Slave Bus

16 16

1616

Slave Bus

64 64

Tx_MAC Rx_MAC

Synch
FIFO

XIF

8 8

Synch
FIFO

and
Transmit

Chapter 6 Ethernet Channel Engine 61

6.2.3 Host Memory Data Management
The device driver maintains two data structures in the host memory: one for
transmit and the other for receive packets. Both data structures are organized as
“wrap-around descriptor rings.” Each descriptor ring has a programmable number
of descriptors (in the range of 16 through 256). Each descriptor has two entries
(words): a control/status word and a pointer to a data buffer.

The interaction between the hardware and the software is managed via a semaphore
(OWN) bit, that resides in the control/status portion of the descriptor. When the
OWN bit is set to ‘1’, the descriptor is “owned” by the hardware. If the OWN bit is
cleared to ‘0’, the descriptor is “owned” by the software. The owner of the descriptor
is responsible for releasing the ownership when it can no longer use it. Once the
ownership is released, the previous owner may no longer treat the descriptor
contents as valid, since the new owner may overwrite it at any time.

6.2.3.1 Transmit Data Descriptor Ring

A transmit packet that is posted by an upper layer protocol to the device driver may
reside in several data buffers (headers and data) which are scattered in the host
memory. When the device driver posts the packet to the hardware, it allocates a
descriptor for each buffer. The descriptor contains the necessary information about
the buffer that the hardware needs for the packet transfer.

When the packet is ready for transmission, the descriptor(s) ownership is turned
over to the hardware, and a Programmed IO command is issued to the transmit
DMA channel to start the packet transfer from the host memory to the TxFIFO.

When the packet transfer has been completed, the transmit DMA channel turns over
the descriptor ownership back to the driver and polls the next descriptor in the ring.
If the descriptor is owned by the hardware, the next packet transfer begins. If not —
the DMA channel “goes to sleep” until a new command is issued.

The size of the descriptor ring is programmable, and it can be varied in the range of
16–256 in increments of 16 descriptors: 16, 32, 48, ..., 240, 256.

6.2.3.2 Receive Free Buffer Descriptor Ring

For receive operation, the device driver requests a pool of free buffers from the OS.
The buffers are posted to the hardware by allocating a descriptor for each buffer. The
descriptor contains the necessary information about the buffer that the hardware
needs for the packet transfer.

62 Peripheral Component Interconnect Input Output Controller • March 1997

When a packet is ready to be transferred from the RxFIFO to the host memory, the
receive DMA channel polls the next descriptor in the ring. If the hardware owns the
descriptor (free buffer available), the packet transfer begins. During the first burst,
the receive DMA engine will perform “header padding” of the packet by inserting a
programmable number of “junk” words at the beginning of the packet.

When the packet transfer has been completed, the receive DMA channel updates the
descriptor with status information about the received packet, and turns over the
descriptor ownership back to the driver.

If a packet is ready to be transferred from the RxFIFO to the host memory, but the
driver does not have any free buffers allocated to the hardware, the packet will be
dropped into the “bit bucket”, and the DMA channel will try again when the next
packet is ready to go.

The size of the descriptor ring is programmable and can assume the following
values: 32, 64, 128, 256.

6.2.4 Local Memory Data Management
Each DMA channel contains its own dedicated on-chip local buffer of 2K bytes
(fixed) in size. The local buffers are used for temporary storage of packets en route to
or from the network, and are organized as wrap-around FIFOs.

In general, the local buffer organization and data structures are invisible to the
software, except for diagnostic purposes.

Since the local buffers reside in the data path, their logical organization changes
depending on the PCI Bus width. For a 32-bit PCI Bus, the FIFO organization is
512words × 33bits. For a 64-bit PCI Bus, the FIFOs are organized as 256words ×
65bits. The “extra” bits (bit 33 or bit 65) along the word are used as end-of-packet
delimiters (or “tags”). When a packet is stored in the local buffer, the tag will be
cleared to ‘0’ for the entire data portion of the packet, except for the last word. The
tag will be set to ‘1’ for the last data word of the packet and for the control/status
word.

6.2.4.1 Transmit FIFO Data Structures

When a transmit packet is transferred from the host into the local memory, the first
byte of the packet in the FIFO is always loaded to be word (or double-word) aligned.
If the packet is composed of several data buffers, the data buffers are concatenated
as a contiguous byte stream in the FIFO (”gather” function). The last byte of a packet
can reside at any byte boundary, therefore the last data word of the packet is marked

Chapter 6 Ethernet Channel Engine 63

by a tag. At the end of the packet a control word is appended, which is again
marked by a tag bit. The control word indicates the last byte boundary for the
packet.

6.2.4.2 Receive FIFO Data Structures

When a receive packet is transferred from the RX_MAC into the local memory, the
half-word (16-bit) data stream is packed into words (or double-words), with the first
byte of the packet starting at a programmable offset within the first word.

Even though the receive data structures’ functionality does not require to tag the last
data word of a packet, the hardware will do that to provide a more robust
implementation.

At the end of the packet a status word is appended, which is again marked by a tag
bit. This word provides status information about the received frame, which is either
passed to the device driver or used for unloading the frame from the RxFIFO.

6.2.5 Theory of Operation and Data Flow
Following are detailed descriptions of the sequences of events that take place in each
DMA channel during normal transmission and reception of packets to/from the
network. Each DMA channel has two simultaneously active processes: one for
loading the local FIFO and the other for unloading it. The loading process is trying
to keep the corresponding FIFO “as full as possible”, and the unloading process will
try to keep it “as empty as possible”.

6.2.5.1 Transmit Operation

▼ TxFIFO Load Process

1. An upper layer protocol posts a packet for transmission to the device driver. The
packet may reside in one or more data buffers.

2. The device driver posts the packet to the hardware, by allocating a descriptor for
each data buffer. The descriptor ownership is turned over to the hardware.

3. The device driver issues a PIO command to the Tx DMA engine: “transmit
pending.” At this time the Write Pointer and the Shadow Write Pointer are equal,
and point to next available location in TxFIFO.

4. The transmit DMA engine fetches the next descriptor from the ring using an 8-
byte DVMA burst read.

64 Peripheral Component Interconnect Input Output Controller • March 1997

5. The Load Control state machine checks for space availability in the TxFIFO.

6. If there is not enough space in the FIFO to fit a DVMA burst (programmable size),
the state machine waits for some space to free up.

7. Once there is enough space in the FIFO, the state machine executes a DVMA burst
read. As data is being loaded into the FIFO, the Write Pointer increments while
the Shadow Write Pointer remains fixed pointing to the beginning of the packet in
the FIFO.

8. On its way to the FIFO the data passes through the Chaining module where byte
alignment is performed. For the first buffer, the data is aligned to a word or
double-word boundary in the FIFO. For subsequent buffers, “byte rotation” is
performed, to form a contiguous data stream in the FIFO for each packet.

9. As the “chained” data stream “flies-by” on its way to the FIFO, the Checksum
module monitors it, and the TCP checksum is computed starting from the
“start_checksum_offset”. Also, the word indicated by “stuff_checksum_offset” is
saved in a temporary holding register.

10. Steps 5 through 9 are repeated until the entire buffer is transferred from the host
memory into the FIFO.

11. The transmit DMA engine turns over the descriptor ownership back to the device
driver using a single-word DMA cycle to update the descriptor.

12. If the packet contains more than one data buffer, steps 4 through 11 are repeated
until the entire packet has been transferred from the host memory into the FIFO.

13. If TCP checksum generation is disabled for the packet — skip to step 18.

14. The Write Pointer and the Shadow Write Pointer exchange their values.

15. The checksum result is loaded to the appropriate field in the holding register in
the Checksum module.

16. The holding register contents are loaded into the FIFO at the
“stuff_checksum_offset.”

17. The Write Pointer is loaded by the contents of the Shadow Write Pointer.

18. The last data word of the packet and the control word are loaded into the FIFO
with the tag bits set.

19. The Shadow Write Pointer is loaded by the contents of the Write Pointer, with
both of them pointing to the next available location in the FIFO.

20. An interrupt is generated to indicate a successful completion of the loading
process.

Chapter 6 Ethernet Channel Engine 65

21. The transmit DMA engine fetches the next descriptor from the ring. If the
descriptor is owned by the hardware, steps 5 through 19 are repeated. If not —
the DMA engine generates an interrupt (tx_all) and “goes to sleep” until it is
“awakened” by a “transmit pending” command from the device driver.

▼ TxFIFO Unload Process

1. The TxFIFO unload process is kicked off when the amount of packet data in the
FIFO has exceeded the programmable threshold, or the number of frames in the
FIFO is greater or equal to one. Until then the requests for data from the TX_MAC
are ignored. At this time the Read Pointer and the Shadow Read Pointer are
equal, and point to the beginning of the next packet in the FIFO.

2. Once transmission is enabled, the Unload Control state machine reads one word
of data out of the FIFO, unpacks the data into a 16-bit data stream, and transfers
it to the TX_MAC in bursts of 8 bytes at a time over the ETX↔TX_MAC
interface. As data is being unloaded from the FIFO, the Read Pointer increments
while the Shadow Read Pointer remains fixed pointing to the beginning of the
packet in the FIFO.

3. If the TxFIFO runs out of data during a packet transfer, the Unload Control state
machine will wait until more data is accumulated in the FIFO.

4. If a normal collision occurs on the network, the frame will be re-transmitted using
the retry mechanism on the ETX↔TX_MAC interface. The Shadow Read Pointer
is loaded into the Read Pointer, and the frame transfer starts from the beginning.

5. When the last word of the frame is encountered (tag bit set to ‘1’), the state
machine waits for the control word to be unloaded, and then transfers the last
burst of data to the TX_MAC.

6. The Shadow Read Pointer is loaded with the contents of the Read Pointer.

7. When the TX_MAC is ready to transmit the next frame, it requests more data
from the Unload Control state machine, and steps 1 through 6 are repeated.

6.2.5.2 Receive Operation

▼ RxFIFO Load Process

1. When a receive frame arrives from the network, the RX_MAC performs protocol
processing on it and evaluates the initial receive criteria (address detection, etc.).
If the frame does not pass this criteria, it is dropped into the “bit bucket.” At this
time the Write Pointer and the Shadow Write Pointer are equal, and point to the
next available location in the RxFIFO.

66 Peripheral Component Interconnect Input Output Controller • March 1997

2. The RX_MAC waits until 8 bytes of data are accumulated in its internal FIFO, and
issues a request for data transfer to the receive DMA engine.

3. The Load Control state machine checks for space availability in the RxFIFO.

4. If there is not enough space in the FIFO to fit an 8-byte burst from the RX_MAC,
the state machine waits for some space to free up.

5. Once there is enough space in the FIFO, the state machine performs a burst
transfer from the RX_MAC to the RxFIFO. As data is being loaded into the
RxFIFO, the Write Pointer increments while the Shadow Write Pointer remains
fixed pointing to the beginning of the packet in the FIFO.

6. As the data stream “flies-by” on its way to the FIFO, the Checksum module
monitors it, and the frame checksum is computed on the entire MAC frame,
starting from a 16-bit aligned programmable “start_checksum_offset”.

7. On its way to the FIFO the data is packed into words. For the first word, the first
byte of the frame is aligned to a programmable offset. For subsequent words,
“byte rotation” is performed, to form a contiguous data stream in the FIFO for
each packet.

8. Steps 2 through 7 are repeated until the entire frame is transferred from the
RX_MAC into the FIFO. The end of the frame is detected by the Load Control
state machine when the status word is received from the RX_MAC.

9. The receive Load Control constructs a new status word, that contains the status
word received from the RX_MAC and the computed TCP checksum.

10. The last word of the frame is loaded into the FIFO with the tag bit set to ‘1’.

11. The status word of the frame is appended to the end of the frame in the FIFO
with the tag bit set to ‘1’.

12. The Shadow Write Pointer is loaded by the contents of the Write Pointer, with
both of them pointing to the next available location in the FIFO.

13. Go to step 1.

▼ RxFIFO Unload Process

1. The RxFIFO unload process is kicked off when the amount of packet data in the
FIFO has exceeded 128 bytes (fixed), or the number of frames in the FIFO is
greater or equal to one.

2. Once the receive frame is ready to be transferred to the host memory, the receive
DMA engine fetches the next descriptor from the ring using an 8-byte DVMA
burst read.

3. The Unload Control state machine checks for data availability in the RxFIFO.

Chapter 6 Ethernet Channel Engine 67

4. If the amount of packet data is less than one DVMA burst size (programmable),
the state machine waits for more data to accumulate in the FIFO.

5. Once there is more than a burst-size amount of data in the FIFO, or an entire
packet has been stored in the FIFO, the DMA Control state machine executes a
DVMA burst write. For the first burst of a frame, the Unload Control state
machine performs “header padding” by inserting a programmable number of
“junk” words at the beginning of the burst.

6. Steps 3 through 5 are repeated until the entire frame is transferred into the host
buffer.

7. When the last word of the frame is encountered during a DVMA burst, the
Unload Control state machine constructs a descriptor status word.

8. The receive DMA engine turns over the descriptor ownership back to the device
driver using a single-word DMA cycle to update the descriptor status field.

9. An interrupt is generated to indicate a successful completion of the unloading
process.

10. Go to step 1.

6.2.6 Error Conditions and Recovery
There are two types of error conditions that can be encountered during the normal
operation of the Ethernet Channel: fatal errors and non-fatal errors.

Fatal errors are errors that “should never occur.” They usually indicate a serious
failure of the hardware or a serious programming error. When this type of error
occurs, the recovery process is “non-graceful.” The corresponding DMA channel will
“freeze”, and the software is expected to reset the channel after the appropriate
actions were taken to correct the failure. Fatal error events are always reported to the
software via an interrupt.

Non-fatal errors are errors that are “expected to occur” when certain conditions
occur on the network or in the system. When this type of error occurs, a “graceful”
recovery mechanism is provided via a combination of hardware and software, as
described below. Non-fatal errors may or may not be reported to the software.

6.2.6.1 Fatal Errors

The error conditions described below can occur both in the transmit and in the
receive DMA channels.

68 Peripheral Component Interconnect Input Output Controller • March 1997

Master_Error_Ack
This error condition indicates that an error acknowledgment was detected by the
DMA channel during a DVMA cycle.

Slave_Error_Ack
This error condition indicates that an error acknowledgment was generated by the
DMA channel during a Programmed IO cycle. The hardware will generate an error
acknowledgment if a Programmed IO cycle is executed with transfer size other than
a “word transfer.”

Late_Error
This error condition indicates that a bus late data error was detected by the DMA
channel during a DVMA cycle.

DMA_Read_Parity_Error
This error condition indicates that a parity error was detected by the DMA channel
during a DVMA Read cycle.

Slave_Write_Parity_Error
This error condition indicates that a parity error was detected by the DMA channel
during a Programmed IO Write cycle.

FIFO_Tag_Error
The data structures in the local FIFOs make use of tag bits for delimiting packet
boundaries. The last data word and the control/status word of a frame are expected
to have their tag bits set to ‘1’. If the Unload Control state machine does not see two
consecutive tag bits set to ‘1’, a local memory failure is recognized, and the
unloading process is aborted.

6.2.6.2 Non-fatal Errors

The error conditions described below can occur in the specified DMA channel only.

Tx_FIFO_Underrun
This error condition can occur only when the programmable threshold is used to
enable transmission of the frame by the TX_MAC (the threshold value is less than
the maximum frame size). If the available bandwidth on the PCI Bus dedicated to
transmit DMA is less than the available throughput on the network, the TxFIFO may
run out of data before the frame transmission has completed. The TX_MAC may
become “starved” for data, and the frame transmission is aborted. The unloading of

Chapter 6 Ethernet Channel Engine 69

the frame from the FIFO will continue until the entire frame is transferred to the
TX_MAC, but the TX_MAC will drop the remainder of the frame into the “bit
bucket.” The TX_MAC will generate an interrupt to the device driver to indicate the
occurrence of this event.

Rx_Abort (early and late)
A receive frame can be aborted for various reasons at any time during the frame
transfer from the network to the host memory. The intent of the provided abort
mechanism is to utilize the available hardware resources efficiently, without
incurring unnecessary performance penalties.

If an abort condition is detected before the frame transfer has begun from the
RX_MAC into the Rx_FIFO (address detection criteria, short fragment, etc.) the
RX_MAC drops the frame and the receive DMA channel never sees it.

If an abort condition occurred after the frame transfer from the RX_MAC into the
Rx_FIFO has begun, but before at least 128 bytes of data were transferred from the
RX_MAC to the RX_FIFO (long fragment, etc.), the Load Control state machine re-
winds the Write Pointer to the Shadow Write Pointer and gets ready to receive the
next frame. This way the FIFO locations that were occupied by the long fragment are
re-used by the next frame.

If an abort condition is detected after at least 128 bytes of data were transferred from
the RX_MAC to the RX_FIFO (very long fragment, crc error, code error on the
media, etc.), the Load Control state machine sets the “abort” bit in the status word
that is appended to the frame and gets ready to receive the next frame. When the
aborted frame is unloaded from the RxFIFO, the Unload Control state machine
detects the “abort” bit in the status word and reuses the current descriptor (host data
buffer) for the next frame.

This error condition is not reported to the software, but the events causing it have
their individual reporting mechanisms.

Rx_FIFO_Overflow
If the available bandwidth on the PCI Bus dedicated to receive DMA is less than the
available throughput on the network, the RxFIFO may run out of space and not be
able to receive any more data from the RX_MAC. This condition propagates to the
RX_MAC, and when it runs out of space in its synchronization FIFO the frame is
aborted using the rx_abort mechanism that was described above. The RX_MAC will
continue to receive the frame from the network, but the remainder of the frame is
dropped “on the floor.” The RX_MAC will generate an interrupt to the device driver
to indicate the occurrence of this event.

70 Peripheral Component Interconnect Input Output Controller • March 1997

Rx_Buffer_Not_Available
When a receive frame is ready to be transferred to the host memory, the DMA
Control state machine fetches the next descriptor from the ring. If the descriptor is
not owned by the hardware, the error condition is encountered. The unloading
process unloads the frame from the RxFIFO and drops it “on the floor.” When the
next frame in the FIFO is to be unloaded, the DMA Control state machine polls the
descriptor again. An interrupt is generated to the device driver to indicate the
occurrence of this event.

Rx_Buffer_Overflow
The unloading process transfers frames from the RxFIFO to data buffers in the host
memory. If the size of a buffer in the host memory is smaller than the frame size, the
buffer is filled up and the remainder of the frame is dropped “on the floor.” This
error condition is not reported to the software via an interrupt. Instead, when the
descriptor is returned to the device driver, an “overflow” status bit is set in the
descriptor. Also, the “length” field in the descriptor specifies the actual size of the
frame received.

6.3 Programmer’s Reference Guide

6.3.1 Overview
During normal operation, the software-to-hardware interaction is primarily
performed via the host memory data structures, with a minimal command/status
handshake (”less than one” interrupt per packet). Software intervention is required
for initialization of the hardware after resetting the Channel, for network
management, for error recovery and for diagnostic purposes. Local FIFOs’ data
structures and most of the registers are invisible to the software, except for
diagnostic purposes.

6.3.2 Host Memory Data Structures
The host memory data structures are organized as “wrap-around descriptor rings”
of programmable size. The transmit and receive data structures are very similar,
except for three major differences:

1. Descriptor layout

Chapter 6 Ethernet Channel Engine 71

2. Number of descriptors per packet: one for receive, unlimited for transmit

3. Data buffer alignment restrictions: none for transmit, one for receive

Programming Restrictions: The pointers to Descriptor Ring Base Addresses must
be 2K-byte aligned.

6.3.2.1 Transmit Data Structures

FIGURE 6-6 shows the transmit descriptor ring organization.

Table 6-1 Transmit Data Structures: Descriptor Layout – Control Word

Bits Field Name Description

[13:0] Data Buffer Size Indicates the number of data bytes in the buffer.
All values are legal in a 16 KB range, including 0

[19:14] Checksum Start Offset Indicates the number of bytes from the first byte of
the packet that should be skipped before the TCP
checksum calculation begins. This field is only
meaningful if the Checksum Enable bit is set to ‘1’

[27:20] Checksum Stuff Offset Indicates the byte number from the first byte of the
packet that will contain the first byte of the
computed TCP checksum. This field is only
meaningful if the Checksum Enable bit is set to ‘1’

[28] Checksum Enable If set to ‘1’, the computed TCP checksum will be
“stuffed” into the packet

[29] End Of Packet When set to ‘1’, indicates the last descriptor of a
transmit packet

[30] Start Of Packet When set to ‘1’, indicates the first descriptor of a
transmit packet

[31] OWNership semaphore To turn over ownership, the hardware clears this
bit, and the software sets it.

Table 6-2 Transmit Data Structures: Descriptor Layout – Data Buffer Pointer

Bits Field Name Description

[31:0] Data Buffer Pointer This 32-bit pointer indicates the first data byte of
the transmit buffer

72 Peripheral Component Interconnect Input Output Controller • March 1997

Programming Restrictions: 1. If a packet occupies more than one descriptor, the
software must turn over the ownership of the
descriptors to the hardware “last-to-first”, in order to
avoid race conditions.

2. If a packet resides in more than one buffer, the
Checksum Enable, Checksum Stuff_Offset and
Checksum_Start_Offset fields must have the same
values in all the descriptors that were allocated to the
packet.

3. The hardware implementation relies on the fact, that
if a buffer starts at an “odd” byte boundary, the DMA
state machine can “rewind” to the nearest burst
boundary and execute a full DVMA burst Read.

6.3.2.2 Receive Data Structures

FIGURE 6-7 shows the receive descriptor ring organization.

Table 6-3 Receive Data Structures: Descriptor Layout – Status Word

Bits Field Name Description

[15:0] TCP Checksum This field contains the 16-bit TCP checksum that
was calculated on the entire frame. It will be
updated for every frame that was received from
the network. The software has the choice of either
making use of it, or ignoring it

[29:16] Free_Buffer/
Packet_Data Size

When the descriptor ownership is passed from the
software to the hardware, this field contains the
size of the free buffer that was allocated for the
packet. When the descriptor ownership is passed
from the hardware to the software, this field
indicates the actual number of packet data bytes
that were “dumped” into the buffer

[30] Overflow When a Rx_Buffer_Overflow condition occurs, this
bit will be set to ‘1’ for the frame that could not fit
into the allocated buffer

[31] OWNership semaphore To turn over ownership, the hardware clears this
bit, and the software sets it

Chapter 6 Ethernet Channel Engine 73

FIGURE 6-6 Transmit Host Data Structure

ControlWord
Data Buffer Pointer

ControlWord
Data Buffer Pointer

ControlWord
Data Buffer Pointer

ControlWord
Data Buffer Pointer

ControlWord
Data Buffer Pointer

ControlWord
Data Buffer Pointer

Descriptor
#0

Packet #1

Packet #2

#n

#n+1

#n+2

#n+3Packet #3

31 30 29 28 27 20 19 14 13 0

OWN SOP EOP
CHKSM
ENABLE Checksum_Stuff_Offset Checksum_Start_Offset Tx_Data_Buffer_Size

Tx_Data_Buffer_Pointer

31 0

Last
Descriptor

74 Peripheral Component Interconnect Input Output Controller • March 1997

Programming Restrictions: Free receive data buffers must be 64-byte aligned.

6.3.3 Local Memory Data Structures
The local memory data structures are organized as “wrap-around FIFOs” that can
store an unlimited number of packets. The transmit and receive data structures are
very similar, except for the format of the control/status word that is appended to the
end of a packet and the alignment of the first byte of a packet when it is loaded into
the FIFO. Also, the RxFIFO does not have a Shadow Read Pointer. The logical
organization of the FIFOs changes depending on the SBus configuration. For a 32-bit
SBus, the FIFO organization is 512words × 33bits. For a 64-bit SBus, the FIFOs are
organized as 256words × 65bits. The “512words × 33bits” configuration makes use of
both the Tag_0 and the Tag_1 bits in the FIFO, while the “256words × 65bits”
configuration uses only the Tag_0 bit.

On the diagrams shown below, FIGURE 6-8 and FIGURE 6-9, frames #1 and #2 represent
a “512words × 33bits” configuration, and frame #n represents a “256words × 65bits”
configuration. In reality, of course, only one configuration is used at a given time.
The configuration is selected by programming the Extended Transfer Mode bit in
Global Config. Register. The amount of “junk” at the beginning of a frame in the
RxFIFO is determined by the “first_byte_offset” field in the ERX Configuration
Register.

The software has the capability to read and write the FIFOs (including Tags) at any
time, using programmed IO instructions. This feature should be used for diagnostic
purposes only. During normal operation, the FIFOs are “invisible” to the software.

Table 6-4 Receive Data Structures: Descriptor Layout – Free Buffer Pointers

Bits Field Name Description

[31:2] Free Buffer Pointer This 29-bit pointer points to the beginning of the
free buffer. The first byte of the actual packet data
inside the buffer will always reside at a
programmable offset from this location, but within
a double-word range

Chapter 6 Ethernet Channel Engine 75

FIGURE 6-7 Receive Host Data Structure

Status Word
Free Buffer Pointer

Status Word
Free Buffer Pointer

Status Word
Free Buffer Pointer

Status Word
Free Buffer Pointer

Descriptor
#0

Descriptor
#1

Descriptor
#n

Last
Descriptor

Packet #1

Packet #2

Packet #n

31 0

31 30 29 16 15 1 0

OWN
OVER-
FLOW Free_Buffer/Packet_Data Size TCP_Checksum

Free Buffer Pointer Reserved

76 Peripheral Component Interconnect Input Output Controller • March 1997

6.3.3.1 TxFIFO Data Structures

FIGURE 6-8 shows the organization of the TxFIFO. The first byte of the frame is
always loaded to be word or double-word aligned.

6.3.3.2 RxFIFO Data Structures

FIGURE 6-9 shows the organization of the RxFIFO. The first byte of the frame is always
loaded at a programmable offset within the first word or double-word.

6.3.4 Other User Accessible Resources
Besides the host and local memory data structures, the hardware provides a
Programmed IO path to a variety of hardware resources for initialization, error
recovery, diagnostics and network management. From the software perspective all
the programmable resources should be treated as 32-bit entities. If not all 32 bits are

Table 6-5 TxFIFO Data Structures: Control Word Layout

Bits Field Name Description

[2:0] Last Byte Boundary This field indicates the offset of the last byte of the
packet within the last data word (or double-word,
depending on the configuration) in the FIFO.

Table 6-6 RxFIFO Data Structures: Status Word Layout

Bits Field Name Description

[15:0] Frame Checksum This field contains the 16-bit TCP checksum for the
frame, as computed during the frame transfer from
the RX_MAC to the RxFIFO

[26:16] Frame Size This field indicates the size of the frame in bytes as
calculated by the RX_MAC

[30] Reserved

[31] Receive Abort This bit communicates the occurrence of a “late
abort” event to the Unload Control state machine.
The frame should be dropped and the descriptor
re-used for the next frame

Chapter 6 Ethernet Channel Engine 77

used in a register, the “unused” bits are grouped as the most significant bits of the
word. Register fields that are “not used” are ignored during a PIO write, and return
‘0’s during a PIO read.

FIGURE 6-8 TxFIFO Organization

Addr 0 Tag_0 63 32Tag_1 31 0

Shadow
Read_Ptr

0
.
.
.
.
.
.
0
0
1

0
.
.
.
.
.
.
0
0
1

Read_Ptr

Shadow
Write_Ptr

Write_Ptr

Addr 255

Frame #1 Data

Frame #2 Data

Frame #1 Control

Frame #2 Data

Frame #1 Data

Frame #n Control

Frame #3 Data

Frame #n Data Frame #n Data

Frame #n Control

Frame #3 Data

Frame #2 Control

.

.

.

.

.

.

.

.

0
.
.
.
.
.
.
0
0
1

0
.
.
.
.
.
0
0
1
1

0
.
.
.
.
.
.

0
.
.
.
.
.
.

0
.
.
.
.
.
.
0
1

x
x
x
x
x
x
x
x
x
x

32-bit
mode

64-bit
mode

Wrap-
Around
FIFO

Frame Control
Word

Tag_0/Tag_1 2 0

1 Reserved Byte Boundary

junk

junkjunk

junk

78 Peripheral Component Interconnect Input Output Controller • March 1997

FIGURE 6-9 RxFIFO Organization

Addr 0 Tag_0 63 32Tag_1 31 0

0
.
.
.
.
.
.
0
0
1

0
.
.
.
.
.
.
0
0
1

Read_Ptr

Shadow
Write_Ptr

Write_Ptr

Addr 255

Frame #1 Data

Frame #2 Data

Frame #1 Control

Frame #2 Data

Frame #1 Data

Frame #n Control

Frame #3 Data

Frame #n Data Frame #n Data

Frame #n Control

Frame #3 Data

Frame #2 Control

.

.

.

.

.

.

.

.

0
.
.
.
.
.
.
0
0
1

0
.
.
.
.
.
0
0
1
1

0
.
.
.
.
.
.

0
.
.
.
.
.
.

0
.
.
.
.
.
.
0
1

x
x
x
x
x
x
x
x
x
x

32-bit
mode

64-bit
mode

Wrap-
Around
FIFO

Tag_0/Tag_1 31 30 29 16 15 0

1 Frame Checksum
Rx_

Rsrvd Frame SizeAbort

Frame Status
Word

junk

junk

junk

junk

junk

junk

junk junk

Chapter 6 Ethernet Channel Engine 79

The description of these resources is grouped by functionality and not necessarily by
their physical location. The default value for all the registers/counters is 0x00000000,
unless specified otherwise.

6.3.4.1 SEB Programmable Resources

 Software Reset Register (RW-AC)

This 2-bit register is used to perform an Individual Software Reset to the ETX or ERX
modules (when the corresponding bit is set), or a Global Software Reset to the entire
Ethernet Channel (when both bits are set). These bits can be set to ‘1’ using a
Programmed IO write to the defined address. They become “self-cleared” after the
corresponding reset command has been executed.

Programming Restrictions: To ensure proper operation of the hardware after a
Software Reset (Individual or Global), this register
must be polled by the software. When both bits read
back as 0’s, the software is allowed to continue to
program the hardware.

TABLE 6-7 Software ResetRegister

Bits Field Name Description

[0] ETX Software Reset

[1] ERX Software Reset

[31:2] Reserved

80 Peripheral Component Interconnect Input Output Controller • March 1997

Global Configuration Register (RW)

This 5-bit register is used to determine the system-related parameters that control the
operation of the DMA channels.

Global Interrupt Mask Register (RW)

This 32-bit register is used to determine which status events will cause an interrupt.
If a mask bit is cleared to ‘0’, the corresponding event causes an interrupt signal to
be generated on the PCI Bus. The layout of this register corresponds bit-by-bit to the
layout of the Status Register, with the exception of bit [23]. The MIF Interrupt is not
maskable here, and should be masked at the source of the interrupt in the MIF (see
Section 6.3.4.5).

Default: 0xFF7FFFFF.

TABLE 6-8 Global Configuration Register

Bits Field Name Description

[1:0] Burst_Size This field determines the size of the host bus bursts
that the DMA channels will execute:
00 — 16-byte burst
01 — 32-byte burst
10 — 64-byte burst
11 — Reserved

[2] Extended_Transfer_Mo
de

When set to ‘1’, 64-bit CEI and PCI Bus DVMA
transactions will be performed. If cleared to ‘0’, a
32-bit CEI/PCI Bus is assumed

[3] Parity_Enable When set to ‘1’, parity checking is performed for
DVMA read and PIO write cycles

[27:4] Reserved

[31:28] Ethernet Channel ID This field identifies the version number of the
Ethernet Channel. Current version # is 0000.

Chapter 6 Ethernet Channel Engine 81

Global Status Register (R-AC)

This 32-bit register is used to communicate to the software events that were detected
by the hardware. If a status bit is set to ‘1’, it indicates that the corresponding event has
occurred. All the bits are automatically cleared to ‘0’ when the Status Register is read
by the software, with the exception of bit [23]. The MIF Status Bit will be cleared after
the MIF Status Register is read.

TABLE 6-9 Global Status Register

Bits Field Name Description

[0] Frame_Received A frame transfer from the RX_MAC to the RxFIFO
has been completed

[1] Rx_Frame_Counter
_Expired

The Rx_Frame_Counter rolled over from FFFF to
0000

[2] Alignment_Error
_Counter_Expired

The Alignment_Error_Counter rolled over from FF
to 00

[3] CRC_Error_Counter
_Expired

The CRC_Error_Counter rolled over from FF to 00

[4] Length_Error_Counter_
Expired

The Length_Error_Counter rolled over from FF to
00

[5] RxFIFO_Overflow The synch. FIFO in the RX_MAC has experienced
an overflow. A receive frame was dropped by the
RX_MAC

[6] Code_Violation
_Counter_Expired

The Code_Violation_Counter rolled over from FF
to 00

[7] SQE_Test_Error A Signal Quality Error was detected in the XIF.

[8] Frame_Transmitted The TX_MAC has successfully transmitted a frame
on the medium

[9] TxFIFO_Underrun The TX_MAC has experienced an underrun in the
synch. FIFO due to “data starvation” caused by
transmit DMA

[10] Max_Packet_Size
_Error

The TX_MAC attempted to transmit a frame that
exceeds the maximum size allowed

[11] Normal_Collision
_Counter_Expired

The Normal_Collision_Counter rolled over from
FFFF to 0000

[12] Excessive_Collision
_Counter_Expired

The Excessive_Collision_Counter rolled over from
FF to 00

[13] Late_Collision_Counter
_Expired

The Late_Collision_Counter rolled over from FF to
00

82 Peripheral Component Interconnect Input Output Controller • March 1997

[14] First_Collision
_Counter_Expired

The First_Collision_Counter rolled over from FFFF
to 0000

[15] Defer_Timer_Expired The Defer_Timer rolled over from FFFF to 0000

[16] Rx_Done A frame transfer from RX_FIFO to the host
memory has been completed

[17] Rx_Buffer_Not
_Available

The receive DMA engine tried to transfer a receive
frame from the RxFIFO to the host memory, but
did not find any descriptors that were available.
The frame was dropped by the DMA engine

[18] Rx_Master_Err_Ack An Error Ack occurred during a receive DMA cycle

[19] Rx_Late_Err A Late Error occurred during a receive DMA cycle

[20] Rx_DMA_Par_Err A Parity Error was detected during a receive DMA
read cycle (descriptor access)

[21] Rx_Tag_Err The Receive Unload Control state machine did not
see two consecutive tag bits set

[22] EOP_Error The Transmit Load Control detected a descriptor
with the OWN bit cleared, before the last
descriptor of the current frame (EOP = 1) has been
processed.

[23] MIF_Interrupt The Status Register in the MIF has at least one
unmasked interrupt set.

[24] Tx_Done A frame transfer from the host memory to the
TxFIFO has completed

[25] Tx_All The transmit DMA has transferred to the TxFIFO
all the frames that have been posted to it by the
software. There are no transmit descriptors that are
currently owned by the hardware

[26] Tx_Master_Err_Ack An Error Ack occurred during a transmit DMA
cycle

[27] Tx_Late_Err A Late Error occurred during a transmit DMA
cycle

[28] Tx_DMA_Par_Err A Parity Error was detected during a transmit
DMA read cycle

TABLE 6-9 Global Status Register (Continued)

Bits Field Name Description

Chapter 6 Ethernet Channel Engine 83

6.3.4.2 ETX Programmable Resources

Transmit Pending Command (RW)

This 1-bit command must be issued by the software for every packet that the driver
posts to the hardware. The bit is set to ‘1’ using a Programmed IO write to the
defined address. This bit becomes “self-cleared” after the command has been
executed. This command is used as a “wake up” signal to the transmit DMA engine.

ETX Configuration Register (RW)

This 10-bit register determines the ETX-specific parameters that control the
operation of the transmit DMA channel.

[29] Tx_Tag_Err The Transmit Unload Control state machine did
not see two consecutive tag bits set

[30] Slave_Err_Ack An Error Ack was generated by the hardware
during a PIO cycle to the Ethernet Channel area.
This is an indication that the PIO cycle was
executed with sb_size other than a “word transfer”

[31] Slave_Par_Err A Parity Error was detected during a PIO write
cycle to the Ethernet Channel area

TABLE 6-9 Global Status Register (Continued)

Bits Field Name Description

84 Peripheral Component Interconnect Input Output Controller • March 1997

Default: 0x3FE.

Transmit Descriptor Pointer (RW)

This 29-bit register points to the next descriptor in the ring. The 21 most significant
bits are used as the base address for the descriptor ring, while the 8 least significant
bits are used as a displacement for the current descriptor.

Programming Restrictions: The Transmit Descriptor Pointer must be initialized to
a 2 Kbyte-aligned value after power-on or software
reset.

Transmit Descriptor Ring Size (RW)

This 4-bit register determines the number of descriptor entries in the ring. The
number of entries can vary from 16 through 256 in increments of 16.

Default: 0xF; 256 descriptor entries.

TABLE 6-10 ETX Configuration Register

Bits Field Name Description

[0] Tx_DMA_Enable When set to ‘1’, the DMA operation of the channel
is enabled. The Load Control state machine will
respond to the next “tx_pending” command. When
cleared to ‘0’, the DMA operation of the channel
will cease as soon as the transfer of the current data
buffer has been completed

[9:1] Tx_FIFO_Threshold This field determines the number of packet data
words that will be loaded into the TxFIFO before
the frame transmission by the TX_MAC is enabled.
The maximum allowable threshold is ‘1BF’.
If the desire is to buffer an entire standard Ethernet
frame before transmission is enabled, this field has
to be programmed to a value greater than ‘1BF’.

[10] Paced_Mode When set to ‘1’, the Tx_All interrupt (bit 25 in the
Global Status Register) will become set only after
the TxFIFO becomes empty. If cleared to ‘0’, the
Tx_All interrupt will function as described in
Section 6.3.4.1.

Chapter 6 Ethernet Channel Engine 85

Transmit Data Buffer Base Address (RO)

This 32-bit register points to the beginning of the transmit data buffer in the host
memory. It is loaded by the DMA state machine during the descriptor fetch phase.
This register is used to generate the DVMA burst address by adding to it the Data
Buffer Displacement.

Transmit Data Buffer Displacement (RO)

This 10-bit counter keeps track of the next DVMA read burst address. It is used as a
displacement for the Data Buffer Base Address. The counter increments by 1, 2 or 4
(depending on the burst size) after a DVMA read burst cycle has been executed by
the transmit DMA engine. The counter is cleared when the Data Buffer Base Address
is loaded by the DMA state machine. This register is used to generate the DVMA
burst address by adding it to the Buffer Base Address.

Transmit Data Pointer (RO)

This 32-bit register points to the next DVMA read burst address. Its contents is the
sum of the Transmit Data Buffer Base Address and the Transmit Data Buffer
Displacement.

TxFIFO Packet Counter (RW)

This 8-bit up/down counter keeps track of the number of frames that currently
reside in the TxFIFO. The counter increments when a frame is loaded into the FIFO,
and decrements when a frame has been transferred to the TX_MAC. This counter is
used to enable frame transfer from the TxFIFO to the TX_MAC.

TxFIFO Write Pointer (RW)

This 9-bit loadable counter points to the next location in the FIFO that will be loaded
with PCI Bus data, the checksum or the frame control word. The counter increments
by 1 or 2 (depending on PCI Bus configuration) after a word (or double-word) was
loaded into the FIFO. The counter is loaded with the contents of Shadow Write
Pointer, plus the appropriate offset, when the checksum is “stuffed” into the frame.
This counter is used to generate the “write” address for the TxFIFO memory core.

86 Peripheral Component Interconnect Input Output Controller • March 1997

TxFIFO Shadow Write Pointer (RW)

This 9-bit register points to the first byte of the packet that is either currently being
loaded or is about to be loaded into the FIFO. The register is loaded with the
contents of the Write Pointer after the packet transfer from the PCI Bus to the FIFO
has been completed. When the Write Pointer is used to “stuff” the checksum into the
frame, this register serves as a temporary hold register for the Write Pointer.

TxFIFO Read Pointer (RW)

This 9-bit loadable counter points to the next location in the FIFO that will be read
from to retrieve packet data that is transferred to the TX_MAC. The counter
increments by 1 or 2 (depending on PCI Bus configuration) after a word (or double-
word) was read from the FIFO. The counter is loaded with the contents of the
Shadow Read Pointer, when a “retry” occurs due to a collision on the network. This
counter is used to generate the “read” address for the TxFIFO memory core.

TxFIFO Shadow Read Pointer (RW)

This 9-bit register points to the first byte of the packet that is either currently being
unloaded or is about to be unloaded from the TxFIFO. The register is loaded with
the contents of the Read Pointer after the packet transfer from the FIFO to the
TX_MAC has been completed. This register is used to “rewind” the Read Pointer for
frame re-transmission due to a collision on the network.

ETX State Machine Register (RO)

This 23-bit register provides the current state for all the state machines in ETX.

TABLE 6-11 ETX State Machine Register

Bits Field Name Description

[4:0] Checksum State Machine state

[11:5] Chaining State Machine state

[16:12] Unload Control State Machine state

[22:17] Load Control State Machine state.

Chapter 6 Ethernet Channel Engine 87

TxFIFO (RW)

For diagnostic purposes a PIO path has been provided into the TxFIFO. When using
PIOs, the configuration of the TxFIFO will be 512x33bits. In order to be able to access
all the bits in the memory core, the address space of the TxFIFO has been doubled
and split into two “apertures” as follows:

■ Writing to the Lower Aperture will load 32 bits of data and clear the tag bit to ‘0’
at the addressed location

■ Writing to the Higher Aperture will load 32 bits of data and set the tag bit to ‘1’ at
the addressed location

■ Reading from the Lower Aperture will return 32 bits of data from the addressed
location

■ Reading from the Higher Aperture will return the tag bit from the addressed
location on data line [0]

Programming Restrictions: The Tx_FIFO should never be accessed using PIOs
during normal operation.

6.3.4.3 ERX Programmable Resources

ERX Configuration Register (RW)

This 23-bit register determines the ERX-specific parameters that control the operation
of the receive DMA channel.

TABLE 6-12 ERX Configuration Register

Bits Field Name Description

[0] Rx_DMA_Enable When set to ‘1’, the DMA operation of the channel
is enabled. The Load Control state machine will
start responding to RX_MAC requests for data
transfer. When cleared to ‘0’, the DMA operation of
the channel will cease as soon as the transfer of the
current frame has been completed.

[2:1] Reserved

[5:3] First_Byte_offset This field determines the offset of the first data
byte of the packet within the first double-word of
packet data in the RxFIFO and in the host data
buffer.

[8:6] Reserved

88 Peripheral Component Interconnect Input Output Controller • March 1997

Receive Descriptor Pointer (RW)

This 29-bit register points to the next descriptor in the ring. The 21 most significant
bits are used as the base address for the descriptor ring, while the 8 least significant
bits are used as a displacement for the current descriptor.

Programming Restrictions: The Receive Descriptor Pointer must be initialized to
a 2KByte-aligned value after power-on or software
reset.

Receive Data Buffer Pointer (RO)

This 28-bit loadable counter keeps track of the next DVMA write burst address. The
counter increments by 1, 2 or 4 (depending on the burst size) after a DVMA write
burst cycle has been executed by the receive DMA engine. The counter is loaded
with the free_buffer_pointer during the descriptor fetch phase. This counter is used
to generate the DVMA write burst address.

RxFIFO Packet Counter (RW)

This 8-bit up/down counter keeps track of the number of frames that currently
reside in the RxFIFO. The counter increments when a frame is loaded into the FIFO,
and decrements when a frame has been transferred to the host memory. This counter
is used to enable a frame transfer to the host memory.

[10:9] Desc_Ring_Size This field determines the number of descriptor
entries in the ring. These bits are encoded as
follows:
00: 32 entries
01: 64 entries
10: 128 entries
11: 256 entries

[15:11] Reserved

[22:16] Checksum_Start_Offset Checksum_Start_Offset. Indicates the number of
half-words from the first byte of the packet that
should be skipped before the TCP checksum
calculation begins

TABLE 6-12 ERX Configuration Register (Continued)

Bits Field Name Description

Chapter 6 Ethernet Channel Engine 89

RxFIFO Write Pointer (RW)

This 9-bit loadable counter points to the next location in the RxFIFO that will be
loaded with data from the RX_MAC. The counter increments by 1 or 2 (depending
on PCI Bus configuration) after a word (or double-word) was loaded into the FIFO.
The counter is loaded with the contents of Shadow Write Pointer, when an “early
receive abort” needs to be performed. This counter generates the “write” address for
the RxFIFO memory core.

RxFIFO Shadow Write Pointer (RW)

This 9-bit register points to the first word of the packet that is either currently being
loaded or is about to be loaded into the FIFO. The register is loaded with the
contents of the Write Pointer after the packet transfer from the RX_MAC to the FIFO
has been completed. This register is used to perform an “early receive abort.”

RxFIFO Read Pointer (RW)

This 9-bit loadable counter points to the next location in the RxFIFO that will be read
from to retrieve packet data that is transferred to the host memory. The counter
increments by 1 or 2 after a word (or double-word) was read from the FIFO. This
counter generates the “read” address for the RxFIFO memory core.

ERX State Machine Register (RO)

This 32-bit register provides the current state for all the state machines in ERX.

Default: 0x0.

TABLE 6-13 ERX State Machine Register

Bits Field Name Description

[4:0] Load Control State Machine state

[6:5] FIFO Pointer state

[9:7] Checksum State Machine state

[15:10] Reserved

[19:16] Data State Machine state

[23:20] Descriptor State Machine state

[25:24] ERX Memdone Counter state

[31:26] Reserved

90 Peripheral Component Interconnect Input Output Controller • March 1997

RxFIFO (RW)

For diagnostic purposes a PIO path has been provided into the RxFIFO. When using
PIOs, the configuration of the RxFIFO will be 512x33bits. In order to be able to access
all the bits in the memory core, the address space of the RxFIFO has been doubled
and split into two “apertures” as follows:

■ Writing to the Lower Aperture will load 32 bits of data and clear the tag bit to ‘0’
at the addressed location

■ Writing to the Higher Aperture will load 32 bits of data and set the tag bit to ‘1’ at
the addressed location

■ Reading from the Lower Aperture will return 32 bits of data from the addressed
location

■ Reading from the Higher Aperture will return the tag bit from the addressed
location on data line [0]

Programming Restrictions: The Rx_FIFO should never be accessed using PIOs
during normal operation.

6.3.4.4 MAC Programmable Resources

XIF Programmable Resources

XIF Configuration Register (RW)
This 10-bit register determines the parameters that control the operation of the
transceiver interface.

TABLE 6-14 XIF Configuration Register

Bits Field Name Description

[0] Tx_Output_Enable When set to ‘1’, this bit enables the output drivers
on the MII transmit bus

[1] Loopback This mode of operation implements the internal
loopback for the Ethernet Channel. The entire
channel is driven off the system clock, the MII
transmit bus is looped back to the MII receive bus,
and the MII Tx_En signal is looped back to the MII
Rx_Dv input

Chapter 6 Ethernet Channel Engine 91

Default: 0x140.

Programming Restrictions: To ensure proper operation of the hardware, when a
loopback configuration is entered or exited, a Global
Initialization Sequence should be performed.

[2] MII_Loopback This mode of operation supports the external
loopback for the Ethernet Channel. The entire
channel is driven off the system clock. An external
loopback connector should be used to loop back
the MII transmit bus to the MII receive bus, and the
MII Tx_En signal to the MII Rx_Dv input

[3] MII_Buffer_Enable This bit has been provided to control an external
tri-state buffer that may reside on the MII receive
data bus

[4] Rev. 2.1:
SQE_Test_Enable

Rev. 2.2: LANCE_Mode

When set to ‘1’, this bit enables the Signal Quality
Error Test as defined in Chapter 14 of IEEE 802.3.
This feature is applicable only if a 10Base-T
transceiver is connected to the MII, that
implements this function

When set to ‘1’, this bit enables the programmable
extension of the Rx-to-Tx IPG.
In this mode, the TxMAC will defer during IPG0
and IPG1 when timing the Rx-to-Tx IPG, and will
not defer during IPG2.
When cleared to ‘0’, the Tx_MAC will ignore IPG0,
defer during IPG1 when timing the Rx-to-Tx IPG,
and will not defer during IPG2.

[9:5] Rev. 2.1:
SQE_Test_Window

Rev. 2.2: IPG0

This field defines the “time window” during which
the MII COL signal should become asserted, after
the completion of the last transmission. This field is
only meaningful if the SQE_Test_Enable bit is set to
‘1’

This field defines the value of InterPacketGap0.
This field is valid only if the LANCE_Mode is
enabled, and ignored otherwise. The time
interval specified in this register is in units
of media nibble time.

TABLE 6-14 XIF Configuration Register (Continued)

Bits Field Name Description

92 Peripheral Component Interconnect Input Output Controller • March 1997

TX_MAC Programmable Resources

TX_MAC Software Reset Command (RW)
This 1-bit command performs a software reset to the logic in the TX_MAC. The bit is
set to ‘1’ when a Programmed IO write is performed to the defined address. This bit
becomes “self-cleared” after the command has been executed.

TX_MAC Configuration Register (RW)
This 11-bit register controls the operation of the TX_MAC.

TABLE 6-15 TX_MAC Configuration Register

Bits Field Name Description

[0] Tx_MAC_Enable When set to ‘1’, the TX_MAC will start requesting
packet data from the ETX, and the transmit
Ethernet protocol execution will begin. When
cleared to ‘0’, it will force the TX_MAC state
machines to either remain in the idle state, or to
transition to the idle state and stay there at the
completion of an ongoing packet transmission

[4:1] Reserved

[5] Slow_Down When set to ‘1’, this bit will cause the TX_MAC to
check for carrier sense before every transmission
on the medium, and for the entire duration of the
IPG. For normal operation this bit should be
cleared to ‘0’

[6] Ignore_Collision When set to ‘1’, this bit will cause the TX_MAC to
ignore collisions on the medium. For normal
operation this bit should be cleared to ‘0’

[7] No_FCS When set to ‘1’, this bit will cause the TX_MAC not
to generate the CRC for the transmitted frame. For
normal operation this bit should be cleared to ‘0’

[8] No_Backoff When this bit is set to ‘1’, the backoff algorithm in
the Protocol Engine is disabled. The TX_MAC will
not back off after a transmission attempt that
collided on the medium. Effectively the random
number chosen by the backoff algorithm is fixed to
‘0’. For normal operation this bit should be cleared
to ‘0’

Chapter 6 Ethernet Channel Engine 93

Programming Restrictions: To ensure proper operation of the TX_MAC, the
TX_MAC_En bit must always be cleared to ‘0’ and a
delay imposed before a PIO write to any of the other
bits in the TX_MAC Configuration register or any of
the MAC parameters registers is performed. The MAC
parameters’ registers are: IPG1, IPG2, AttemptLimit,
SlotTime, PA_Size, PA_Pattern, SFD_Pattern, JamSize,
TxMinFrameSize and TxMaxFrameSize.

The amount of delay required will depend on the time
required to transmit a maximum size frame, and is
thus dependent on the value programmed into the
TxMaxFrameSize register and the data rate on the
medium. For a standard 1518-byte frame on a
100Mbps network the delay would be 125msec. To
avoid the requirement for a variable time delay, the
TX_MAC_En bit may be polled, and when this bit
reads back as a ‘0’, all the registers mentioned above
may be written, including all the other bits in the
Configuration register.

[9] Full_Duplex When this bit is set to ‘1’, the CSMA/CD protocol
is modified such that the TX_MAC will never “give
up” on a frame transmission. In effect no limit will
exist on transmission attempts. If the backoff
algorithm reaches the attempts_limit, it will clear
the attempts_counter and continue trying to
transmit the frame until it is successfully
transmitted on the medium. For normal operation
it is recommended that this bit is set to ‘1’

[10] Never_Give_Up When this bit is set to ‘1’, the CSMA/CD
protocol is modified such that the TX_MAC will
never “give up” on a frame transmission. In
effect no limit will exist on transmission
attempts. If the backoff algorithm reaches the
attempts_limit, it will clear the attempts_counter
and continue trying to transmit the frame until it
is successfully transmitted on the medium. For
normal operation it is recommended that this bit
is set to ‘1’

TABLE 6-15 TX_MAC Configuration Register (Continued)

Bits Field Name Description

94 Peripheral Component Interconnect Input Output Controller • March 1997

InterPacketGap1 Register (RW)
This 8-bit register defines the first 2/3 portion of the InterPacketGap, which is timed
by the TX_MAC before each frame’s transmission is initiated. For back-to-back
transmissions, this value is added to the value in the InterPacketGap2 register, and
during the entire period the CarrierSense input signal is ignored by the TX_MAC.
For a reception followed by a transmission, the TX_MAC will monitor the
CarrierSense input signal during the time interval specified in this register and will
respond to it, but will ignore it during the time interval specified in the
InterPacketGap2 register. The time interval specified in this register is in units of
media byte time.

Default: 0x08.

InterPacketGap2 Register (RW)
This 8-bit register defines the second 1/3 portion of the InterPacketGap parameter.

Default: 0x04.

AttemptLimit Register (RW)
This 8-bit register specifies the number of attempts that the TX_MAC will make to
transmit a frame, before giving up on the transmission

Default: 0x10.

SlotTime Register (RW)
This 8-bit register specifies the slot time parameter in units of media byte time. This
parameter defines the physical span of the network.

Default: 0x40.

PA Size Register (RW)
This 8-bit register specifies the number of PreAmble bytes that will be transmitted at
the beginning of each frame. The register must be programmed with a value of 2 or
greater.

Default: 0x07.

PA Pattern Register (RW)
This 8-bit register specifies the bit pattern of the PreAmble bytes that are transmitted
at the beginning of each frame. The most significant bit of this register is transmitted
and received first.

Default: 0xAA.

Chapter 6 Ethernet Channel Engine 95

SFD Pattern Register (RW)
This 8-bit register specifies the bit pattern of the Start of Frame Delimiter bytes that
are transmitted at the beginning of each frame, after the preamble. The most
significant bit of this register will be transmitted and received first.

Default: 0xAB.

JamSize Register (RW)
This 8-bit register specifies the number of bytes to be transmitted by the TX_MAC
after detecting a collision on the media.

Default: 0x04.

TxMinFrameSize Register (RW)
This 8-bit register specifies the minimum number of bytes that the TX_MAC will
transmit for any frame on the media.

Default: 0x40.

TxMaxFrameSize Register (RW)
This 16-bit register specifies the maximum number of bytes that the TX_MAC will
transmit for any frame on the media.

Default: 0x05EE.

PeakAttempts Register (R-AC)
This 8-bit register indicates the highest number of collisions per successfully
transmitted frame, that have occurred since this register was last read. The
maximum value this register can attain corresponds to the value in the AttemptLimit
register minus one. This register will automatically be cleared to ‘0’ after it is read.

Defer Timer (RW)
This 16-bit loadable timer increments when the TX_MAC is deferring to traffic on
the network while it is attempting to transmit a frame. The time base for the timer is
the media byte clock divided by 256. Thus, on a 10Mbps network the timer ticks are
200 msec., and on a 100Mbps network the timer ticks are 20msec.

Normal Collision Counter (RW)
This 16-bit loadable counter increments for every frame transmission attempt that
experiences a collision.

96 Peripheral Component Interconnect Input Output Controller • March 1997

First Successful Collision Counter (RW)
This 16-bit loadable counter increments for every frame transmission that collided
on the first attempt, but succeeded on the second attempt.

Excessive Collision Counter (RW)
This 8-bit loadable counter increments for every transmit frame that has exceeded
the AttemptLimit. It indicates the number of frames that the TX_MAC has given up
transmitting due to excessive amount of traffic on the network.

Late Collision Counter (RW)
This 8-bit loadable counter increments for every transmit frame that has experienced
a late collision. It indicates the number of frames that the TX_MAC has given up
transmitting due to collisions that occurred after the TxMinFrameSize number of
bytes have already been transmitted. Usually this is an indication that there is at
least one station on the network that violates the maximum span of the network.

Random Number Seed Register (RW)
This 10-bit register is used as a seed for the random number generator in the backoff
algorithm. The register has significance only after power-on reset, and it should be
programmed with a random value which has a high likelihood of being unique for
each MAC attached to a network segment (10 LSB of the MAC address). During
normal operation, the register contents are updated constantly by the hardware, and
a PIO read from this register will return an unpredictable result.

TX_MAC State Machine Register (RO)
This 8-bit register provides the current state for all the state machines in TX_MAC.

Default: 0x0.

TABLE 6-16 TX_MAC State Machine Register

Bits Field Name Description

[3:0] TLM State Machine state

[7:4] Encapsulation State Machine state

Chapter 6 Ethernet Channel Engine 97

RX_MAC Programmable Resources

RX_MAC Software Reset Command (RW)
This 16-bit command performs a software reset to the logic in the RX_MAC. The
defined address must be written with the value of 0x0000.

RX_MAC Configuration Register (RW)
This 13-bit register controls the operation of the RX_MAC.

TABLE 6-17 RX_MAC Configuration Register

Bits Field Name Description

[0] Rx_MAC_Enable When set to ‘1’, the RX_MAC will start requesting
packet data transfers to the ERX, and the receive
Ethernet protocol execution will begin. When
cleared to ‘0’, it will force the RX_MAC state
machines to either remain in the idle state, or to
transition to the idle state and stay there

[4:1] Reserved

[5] Strip_Pad When set to ‘1’, this bit will cause the RX_MAC to
strip the “pad” bytes of the receive frames

[6] Promiscuous_Mode When set to ‘1’, this bit will cause the RX_MAC to
accept all valid frames from the network,
regardless of the contents of the DA field of a
frame

[7] Err_Check_Disable When set to ‘1’, this bit will cause the RX_MAC to
receive frames from the network without checking
for CRC, framing or length errors

[8] No_CRC_Strip When set to ‘1’, this bit will cause the RX_MAC not
to strip the last four bytes (FCS) of a received frame

[9] Reject_My_Frame When set to ‘1’, this bit will cause the RX_MAC to
discard frames with the SA field matching the
station’s MAC address

[10] Promisc_Group_Mode When set to ‘1’, this bit will cause the RX_MAC to
accept all valid frames from the network that have
the “group” bit in the DA field set to ‘1’

[11] Hash_Filter_Enable When set to ‘1’, the RX_MAC will use the Hash
Table to filter multicast addresses

[12] Address_Filter_Enable When set to ‘1’, the RX_MAC will use the Address
Filtering registers to filter incoming frames

98 Peripheral Component Interconnect Input Output Controller • March 1997

Programming Restrictions: 1. To ensure proper operation of the RX_MAC, the
RX_MAC_En bit must always be cleared to ‘0’ and a
delay of 3.2msec imposed before a PIO write to any of
the other bits in the RX_MAC Configuration register or
any of the MAC parameters’ registers is performed.
The RX_MAC parameters’ registers are:
RxMinFrameSize, RxMaxFrameSize and the MAC
Address registers. To avoid the requirement for a fixed
time delay, the RX_MAC_En bit may be polled, and
when this bit reads back as a ‘0’, all the registers
mentioned above may be written, including other bits
in the Configuration register.

2. To ensure proper operation of the RX_MAC, the
Hash_Filter_Enable bit in the RX_MAC Configuration
register must always be cleared to ‘0’ and a delay of
3.2msec imposed before a PIO write to any of the Hash
Table registers is performed. To avoid the requirement
for a fixed time delay, the Hash_Filter_Enable bit may
be polled, and when this bit reads back as a ‘0’, all the
registers mentioned above may be written.

3. To ensure proper operation of the RX_MAC, the
Address_Filter_Enable bit in the RX_MAC
Configuration register must always be cleared to ‘0’
and a delay of 3.2msec imposed before a PIO write to
any of the Address Filter registers is performed. To
avoid the requirement for a fixed time delay, the
Address_Filter_Enable bit may be polled, and when
this bit reads back as a ‘0’, all the registers mentioned
above may be written.

RxMinFrameSize Register (RW)
This 8-bit register specifies the minimum number of bytes in a frame that the
RX_MAC will expect to see before it will recognize the frame to be valid.

Default: 0x40.

RxMaxFrameSize Register (RW)
This 13-bit register specifies the maximum number of bytes in a frame that the
RX_MAC will expect to see before it will recognize the frame to be invalid.

Default: 0x05EE.

Chapter 6 Ethernet Channel Engine 99

MAC Address 0 Register (RW)
This register contains the 16 least significant bits of the MAC Address. These bits
will be compared against bits [15:0] of the DA field in every frame that arrives from
the network.

MAC Address 1 Register (RW)
This register contains bits [31:16] of the MAC Address. These bits will be compared
against bits [31:16] of the DA field in every frame that arrives from the network.

MAC Address 2 Register (RW)
This register contains the 16 most significant bits of the MAC Address. These bits
will be compared against bits [47:32] of the DA field in every frame that arrives from
the network.

Receive Frame Counter (RW)
This 16-bit loadable counter increments after a valid frame has been received from
the network.

Length Error Counter (RW)
This 8-bit loadable counter increments when a frame, whose length is greater than
the value programmed in the RxMaxFrameSize Register, is received from the
network.

Alignment Error Counter (RW)
This 8-bit loadable counter increments when an alignment error was detected in a
receive frame. An alignment error is reported when a receive frame fails the CRC
checking algorithm, AND the frame does not contain an integer number of bytes (i.e.
the frame size in bits modulo 8 is not equal to zero).

FCS Error Counter (RW)
This 8-bit loadable counter increments when a receive frame failed the CRC checking
algorithm, but it did not cause an alignment error.

Rx Code Violation Counter (RW)
This 8-bit loadable counter increments when an Rx_Err indication is generated by
the XCVR over the MII, while a frame is being received. This indication is generated
by the transceiver when it detects an invalid code in the received data stream. A
receive code violation is not counted as an FCS or an Alignment error.

100 Peripheral Component Interconnect Input Output Controller • March 1997

RX_MAC State Machine Register (RO)
This 7-bit register provides the current state for all the state machines in the RX_MAC.

Hash Table 0 Register (RW)
This register contains bits [15:0] of the Hash Table.

Hash Table 1 Register (RW)
This register contains bits [31:16] of the Hash Table.

Hash Table 2 Register (RW)
This register contains bits [47:32] of the Hash Table.

Hash Table 3 Register (RW)
This register contains bits [63:48] of the Hash Table.

Address Filter 0 Register (RW)
This register contains bits [15:0] of the Address Filter.

Address Filter 1 Register (RW)
This register contains bits [31:16] of the Address Filter.

Address Filter 2 Register (RW)
This register contains bits [47:32] of the Address Filter.

Address Filter Mask Register (RW)
This register contains a 12-bit nibble mask for the Address Filter.

TABLE 6-18 RX_MAC State Machine Register

Bits Field Name Description

[4:0] Receive Protocol State Machine state

[6:5] Pad State Machine state

Chapter 6 Ethernet Channel Engine 101

6.3.4.5 MIF Programmable Resources

MIF Bit-Bang Clock (RW)

This 1-bit register is used to generate the MDC clock waveform on the MII
Management Interface when the MIF is programmed in the “Bit-Bang” Mode.
Writing a ‘1’ after a ‘0’ into this register will create a rising edge on the MDC, while
writing a ‘0’ after a ‘1’ will create a falling edge. For every bit that is transferred on
the management interface, both edges have to be generated.

MIF Bit-Bang Data (RW)

This 1-bit register is used to generate the outgoing data (MDO) on the MII
Management Interface when the MIF is programmed in the “Bit-Bang” Mode. The
data will be steered to the appropriate MDIO based on the state of the PHY_Select
bit in the MIF Configuration Register.

MIF Bit-Bang Output Enable (RW)

This 1-bit register is used to enable (’1’) and disable (’0’) the I-directional driver on
the MII Management Interface when the MIF is programmed in the “Bit-Bang”
Mode. The MDIO should be enabled when data bits are transferred from the MIF to
the transceiver, and it should be disabled when the interface is idle or when data bits
are transferred from the transceiver to the MIF (data portion of a read instruction).
Only one MDIO will be enabled at a given time, depending on the state of the
PHY_Select bit in the MIF Configuration Register.

MIF Configuration Register (RW)

This 10-bit register controls the operation of the MIF.

102 Peripheral Component Interconnect Input Output Controller • March 1997

TABLE 6-19 MIF Configuration Register

Bits Field Name Description

[0] PHY_Select The MIF implements two independent management
interfaces for two separate transceivers. Only one
transceiver can be used at a given time. This bit
determines which transceiver is currently in use.
When cleared to ‘0’, MDIO_0 is selected.
When set to ‘1’, MDIO_1 is selected.

[1] Poll_Enable When set to ‘1’, this bit enables the polling mechanism
as described in 3.2.2.1.2. If this bit is set to ‘1’, the
BB_Mode should be cleared to ‘0’

[2] BB_Mode This bit determines the mode of operation of the MIF.
When set to ‘1’, the “bit-bang mode” is selected. When
cleared to ‘0’, the “frame mode” will be used.

[7:3] Poll_Reg_Addr This field determines the register address in the
transceiver that will be polled by the polling
mechanism in the MIF. It is meaningful only if the
Poll_Enable bit is set to ‘1’

[8] MDI_0 This read-only bit is dual-purpose.
When the MDIO_0 interface is idle, this bit will
indicate whether a transceiver is connected to this line.
If this bit reads as ‘1’, the transceiver is connected.
When the MIF is communicating with a transceiver that
is hooked up to MDIO_0 in the bit-bang mode, this bit
will indicate the incoming bit stream during a read
operation

[9] MDI_1 This read-only bit is dual-purpose.
When the MDIO_1 interface is idle, this bit will
indicate whether a transceiver is connected to this line.
If this bit reads as ‘1’, the transceiver is connected.
When the MIF is communicating with a transceiver that
is hooked up to MDIO_1 in the bit-bang mode, this bit
will indicate the incoming bit stream during a read
operation

[14:10] Poll_Phy_Addr This field determines the transceiver address to be
polled

Chapter 6 Ethernet Channel Engine 103

MIF Frame/Output Register (RW)

This 32-bit register serves as an “Instruction Register” when the MIF is programmed
in the Frame Mode. In order to execute a read/write operation from/to a transceiver
register, the software has to load this register with a valid instruction, as per IEEE 802.3u
MII specification. After issuing an instruction, the software has to poll this register to
check for instruction execution completion. During a read operation, this register will
also contain the 16-bit data that was returned by the transceiver.

TABLE 6-20 MIF Frame/Output Register

Bits Field Name Description

[31:30] ST STart of frame.
When issuing an instruction: This field should always be
loaded with a ‘01’.
When polling for completion: This field is always a “don’t
care”.

[29:28] OP OPcode.
When issuing an instruction: This field should be loaded with
‘01’ for a “write” and with ‘10’ for a “read”.
When polling for completion: This field is always a “don’t
care”.

[27:23] PHYAD PHY ADdress.
When issuing an instruction: This field should be loaded with
the XCVR address.
When polling for completion: This field is always a “don’t
care”.

[22:18] REGAD REGister ADdress.
When issuing an instruction: This field should be loaded with
the address of the register that is to be read/written.
When polling for completion: This field is always a “don’t
care”.

104 Peripheral Component Interconnect Input Output Controller • March 1997

MIF Status Register (R-AC)

This 32-bit register is used in conjunction with the Poll Mode in the MIF. It contains
two portions: Poll Data and Poll Status. The Poll Data field will always contain the latest
and greatest “image update” of the XCVR register that is being polled, while the Poll
Status field will indicate which bits in the Poll Data field have changed since the MIF
Status Register was last read. The Poll Status field is “auto-cleared” after being read.

MIF Mask Register (RW)

This 16-bit register is used to determine which bits in the Poll Status portion of the
MIF Status Register will cause an interrupt. If a mask bit is cleared to ‘0’, the
corresponding bit of the Poll Status will generate the MIF Interrupt when set.

Default: 0xFFFF.

[17] TA_MSB Turn Around, Most Significant Bit.
When issuing an instruction: This bit should always be loaded
with a ‘1’.
When polling for completion: This bit is always a “don’t care”.

[16] TA_LSB Turn Around, Least Significant Bit.
When issuing an instruction: This bit should always be loaded
with a ‘0’.
When polling for completion: This bit serves as a “Valid Bit”.
When this bit is set to’1’, the instruction execution has been
completed.

[15:0] DATA Instruction Payload.
When issuing an instruction: This field should be loaded with
the 16-bit data to be written into a transceiver register for a
“write”, and is a “don’t care” for a “read”.
When polling for completion: This field is a “don’t care” for a
“write”, and contains the 16-bit data returned by the
transceiver for a “read” (if the Valid Bit is set).

TABLE 6-21 MIF Status Register

Bits Field Name Description

[31:16] Poll_Data

[15:0] Poll_Status

TABLE 6-20 MIF Frame/Output Register (Continued)

Bits Field Name Description

Chapter 6 Ethernet Channel Engine 105

MIF State Machine Register (RO)

This 9-bit register provides the current state for all the state machines in the MIF.

6.3.5 Programming Notes

6.3.5.1 Initialization Sequences

▼ Global Initialization

A global initialization sequence should be performed after power-on or when a
Global_Reset command is issued to the Ethernet Channel.

1. Issue a Global_Reset command to the Ethernet Channel.

2. Poll the Global_Reset bit until the execution of the reset has been completed.

3. Set up all the data structures in the host memory.

4. Program the TX_MAC registers/counters (excluding TX_MAC Configuration
register).

5. Program the RX_MAC registers/counters (excluding RX_MAC Configuration
register).

6. Program the Transmit Descriptor Ring Base Address in the ETX.

7. Program the Receive Descriptor Ring Base Address in the ERX.

8. Program the Global Configuration and the Global Interrupt Mask registers.

9. Program the ETX Configuration register (enable the transmit DMA channel).

10. Program the ERX Configuration register (enable the receive DMA channel).

11. Program the XIF Configuration register (enable the XIF).

12. Program the RX_MAC Configuration register (enable the RX_MAC).

13. Program the TX_MAC Configuration register (enable the TX_MAC).

14. Issue the Transmit_Pending command when ready.

TABLE 6-22 MIF State Machine Register

Bits Field Name Description

[2:0] Control State Machine State

[6:5] Execution State Machine State

106 Peripheral Component Interconnect Input Output Controller • March 1997

Transmit Data Path Initialization

This initialization sequence should be performed for error recovery purposes in the
transmit data path.

1. Program the XIF Configuration register (Disable the XIF).

2. Issue a TX_MAC Software Reset command.

3. Issue a ETX Software Reset command.

4. Poll the ETX Software Reset bit until the execution of the reset has been
completed.

5. Set up the transmit data structures in the host memory.

6. Program the TX_MAC registers/counters (excluding TX_MAC Configuration
register).

7. Program the Transmit Descriptor Ring Base Address in the ETX.

8. Program the ETX Configuration register (enable the transmit DMA channel).

9. Program the XIF Configuration register (enable the XIF).

10. Program the TX_MAC Configuration register (enable the TX_MAC).

11. Issue the Transmit_Pending command when ready.

Receive Data Path Initialization

This initialization sequence should be performed for error recovery purposes in the
receive data path.

1. Issue a RX_MAC Software Reset command.

2. Issue a ERX Software Reset command.

3. Poll the ERX Software Reset bit until the execution of the reset has been
completed.

4. Set up the receive data structures in the host memory.

5. Program the RX_MAC registers/counters (excluding RX_MAC Configuration
register).

6. Program the Receive Descriptor Ring Base Address in the ERX.

7. Program the ERX Configuration register (enable the receive DMA channel).

8. Program the RX_MAC Configuration register (enable the RX_MAC).

Chapter 6 Ethernet Channel Engine 107

6.3.6 Memory Map

TABLE 6-23 Ethernet Channel Engine Address Map

PA<27:0>

Access
Size

(bytes) R/W Description

Actual
 Size
(bits)

Default

0x8C00000 4 RW Global Software Reset Register 2 0x0

0x8C00004 4 RW Global Configuration Register 5 0x00

0x8C00100 4 R-AC Global Status Register 32 0x00000000

0x8C00104 4 RW Global Interrupt Mask Register 32 0xFFFFFFFF

0x8C02000 4 RW Transmit Pending Command 1 0x0

0x8C02004 4 RW ETX Configuration Register 10 0x3FE

0x8C02008 4 RW Transmit Descriptor Pointer 32 0x00000000

0x8C0200C 4 RO Transmit Data Buffer Base
Address

 32 0x00000000

0x8C02010 4 RO Transmit Data Buffer
Displacement

 10 0x000

0x8C02014 4 RW TxFIFO Write Pointer 9 0x000

0x8C02018 4 RW TxFIFO Shadow Write Pointer 9 0x000

0x8C0201C 4 RW TxFIFO Read Pointer 9 0x000

0x8C02020 4 RW TxFIFO Shadow Read Pointer 9 0x000

0x8C02024 4 RW TxFIFO Packet Counter 8 0x00

0x8C02028 4 RO ETX State Machine Register 23 0x000000

0x8C0202C 4 RW Transmit Descriptor Ring Size 4 0xF

0x8C02030 4 RO Transmit Data Pointer 32 0x00000000

0x8C03000–
0x8C037FC

4 RW TxFIFO Lower Aperture 32 0xXXXXXX

0x8C03800–
0x8C03FFC

4 RW TxFIFO Higher Aperture 32 0xXXXXXX

0x8C04000 4 RW ERX Configuration Register 23 0x000000

0x8C04004 4 RW Receive Descriptor Pointer 32 0x00000000

0x8C04008 4 RO Receive Data Buffer Pointer 28 0x0000000

0x8C0400C 4 RW RxFIFO Write Pointer 9 0x000

0x8C04010 4 RW RxFIFO Shadow Write Pointer 9 0x000

108 Peripheral Component Interconnect Input Output Controller • March 1997

0x8C04014 4 RW RxFIFO Read Pointer 9 0x000

0x8C04018 4 RW RxFIFO Packet Counter 8 0x00

0x8C0401C 4 RO ERX State Machine Register 32 0x00000000

0x8C05000–
0x8C057FC

4 RW RxFIFO Lower Aperture 32 0xXXXXXX

0x8C05800–
0x8C05FFC

4 RW RxFIFO Higher Aperture 32 0xXXXXXX

0x8C06000 4 RW XIF Configuration Register 10 0x000

0x8C06208 4 RW TX_MAC Software Reset
Command

 1 0x0

0x8C0620C 4 RW TX_MAC Configuration Register 11 0x000

0x8C06210 4 RW InterPacketGap1 Register 8 0x08

0x8C06214 4 RW InterPacketGap2 Register 8 0x04

0x8C06218 4 RW AttemptLimit Register 8 0x10

0x8C0621C 4 RW SlotTime Register 8 0x40

0x8C06220 4 RW PA Size Register 8 0x07

0x8C06224 4 RW PA Pattern Register 8 0xAA

0x8C06228 4 RW SFD Pattern Register 8 0xAB

0x8C0622C 4 RW JamSize Register 8 0x04

0x8C06230 4 RW TxMaxFrameSize Register 16 0x05EE

0x8C06234 4 RW TxMinFrameSize Register 8 0x40

0x8C06238 4 R-AC Peak Attempts Register 8 0x00

0x8C0623C 4 RW Defer Timer 16 0x0000

0x8C06240 4 RW Normal Collision Counter 16 0x0000

0x8C06244 4 RW First Successful Collision Counter 16 0x0000

0x8C06248 4 RW Excessive Collision Counter 8 0x00

0x8C0624C 4 RW Late Collision Counter 8 0x00

0x8C06250 4 RW Random Number Seed Register 10 0x000

0x8C06254 4 RO TX_MAC State Machine Register 8 0x00

0x8C06308 4 RW RX_MAC Software Reset
Command

 16 0xXXXX

TABLE 6-23 Ethernet Channel Engine Address Map (Continued)

PA<27:0>

Access
Size

(bytes) R/W Description

Actual
 Size
(bits)

Default

Chapter 6 Ethernet Channel Engine 109

0x8C0630C 4 RW RX_MAC Configuration Register 13 0x0000

0x8C06310 4 RW RxMaxFrameSize Register 13 0x05EE

0x8C06314 4 RW RxMinFrameSize Register 8 0x40

0x8C06318 4 RW MAC Address 2 Register 16 0x0000

0x8C0631C 4 RW MAC Address 1 Register 16 0x0000

0x8C06320 4 RW MAC Address 0 Register 16 0x0000

0x8C06324 4 RW Receive Frame Counter 16 0x0000

0x8C06328 4 RW Length Error Counter 8 0x00

0x8C0632C 4 RW Alignment Error Counter 8 0x00

0x8C06330 4 RW FCS Error Counter 8 0x00

0x8C06334 4 RO RX_MAC State Machine Register 7 0x00

0x8C06338 4 RW Rx Code Violation Error Counter 8 0x00

0x8C06340 4 RW Hash Table 3 Register 16 0x0000

0x8C06344 4 RW Hash Table 2 Register 16 0x0000

0x8C06348 4 RW Hash Table 1 Register 16 0x0000

0x8C0634C 4 RW Hash Table 0 Register 16 0x0000

0x8C06350 4 RW Address Filter 2 Register 16 0x0000

0x8C06354 4 RW Address Filter 1 Register 16 0x0000

0x8C06358 4 RW Address Filter 0 Register 16 0x0000

0x8C0635C 4 RW Address Filter Mask Register 12 0x000

0x8C07000 4 RW MIF Bit-Bang Clock 1 0x0

0x8C07004 4 RW MIF Bit-Bang Data 1 0x0

0x8C07008 4 RW MIF Bit-Bang Output Enable 1 0x0

0x8C0700C 4 RW MIF Frame/Output Register 32 0x00000000

0x8C07010 4 RW MIF Configuration Register 10 0xX00

0x8C07014 4 RW MIF Mask Register 16 0xFFFF

0x8C07018 4 R-AC MIF Status Register 32 0x00000000

0x8C0701C 4 RO MIF State Machine Register 9 0x000

TABLE 6-23 Ethernet Channel Engine Address Map (Continued)

PA<27:0>

Access
Size

(bytes) R/W Description

Actual
 Size
(bits)

Default

110 Peripheral Component Interconnect Input Output Controller • March 1997

111

CHAPTER 7

EBus2 Channel Engine

7.1 Introduction
This chapter describes an interface which provides the ability to put ISA and
traditional Intel-style peripherals in a SPARC based system with a minimal amount
of glue logic. The interface is called EBus2 and is a part of the PCIO chip.

7.1.1 Features
The following features are supported by the EBus2 Channel Engine:

■ Capable of supporting EPROM, TOD/NVRAM, Audio CODEC, SUPERIO,
external serial ports and generic Intel-style (ISA) slave and slave DMA devices

■ 8 chip selects

■ Programmable cycle time control for slave and DMA accesses

■ Supports up to 4 bytes stacking for slave cycles to Ebus2 devices

■ Supports slave buffered writes

■ Multiplexed address & data bus

■ Four DMA controllers providing similar programming interface as SCSI DMA
controller of DMA2

■ Programmable chained or unchained mode of operation

■ Programmable transfer size for each DMA controller

■ 128 byte buffer for each DMA controller

■ Programmable DMA priority algorithms

A block diagram of EBus2 channel engine is shown in FIGURE 7-1.

112 Peripheral Component Interconnect Input Output Controller • March 1997

 Timing Control
 Registers

 Slave
 Buffer

Slave
 Buffer Control

 &
 EBus2 Priority

 Control

CE Priority
 Control

 CE Interface Block Control

EBus2 Interface Block Control

EBus2

CE _DOUT (64) CE_DIN (64) CE Control

 EBus2 Control (25) EBus2 Data (8)

 EBus2 Data in
 EBus2 Data out
 EBus2 Data (7:0)

 CE_DIN
 CE_DOUT
 Address & Control

FIGURE 7-1 EBus2 channel engine block diagram

DMA Engine
2

EBus2
DMA Engine

1

EBus2
DMA Engine

4

EBus2
DMA Engine

3

CE INTERFACE BLOCK

EBus2 INTERFACE BLOCK

Chapter 7 EBus2 Channel Engine 113

7.2 Address Map
TABLE 7-1 and TABLE 7-2 give address map for EBus2 channel engine. For Access Size,
B=8 bits, H=16 bits and W=32 bits.

TABLE 7-1 EBus2 Address Map

Address Name Description Device R/W Access

Base Address: EBus2 Base Address Register 0 (Boot ROM) - Config Space Address 0x010

0x00 0000
- FF FFFF

EB_CS0_ EBus2 chip select 0 EPROM/Flash PROM R/W BHW

Base Address: EBus2 Base Address Register 1 (EBus2) - Config Space Address 0x014

0x00 0000
- 0F FFFF

EB_CS1_ EBus2 chip select 1 TOD/NVRAM R/W BHW

0x10 0000
- 1F FFFF

EB_CS2_ EBus2 chip select 2 Generic Ebus2 device R/W BHW

0x20 0000
- 2F FFFF

EB_CS3_ EBus2 chip select 3 Audio R/W BHW

0x30 0000
- 3F FFFF

EB_CS4_ EBus2 chip select 4 Super IO R/W BHW

0x40 0000
- 4F FFFF

EB_CS5_ EBus2 chip select 5 sync. serial R/W BHW

0x50 0000
- 5F FFFF

EB_CS6_ EBus2 chip select 6 SC/Lab Console/
Freq.

R/W BHW

0x60 0000
- 6F FFFF

EB_CS7_ EBus2 chip select 7 Generic EBus2 device R/W BHW

0x70 0000
- 70 1FFF

DCTL1 DMA controller 1 Parallel R/W W

0x70 2000
- 70 3FFF

DCTL2 DMA controller 2 Audio (play back) R/W W

0x70 4000
- 70 5FFF

DCTL3 DMA controller 3 Audio (capture) R/W W

0x70 6000
- 70 7FFF

DCTL4 DMA controller 4 Floppy R/W W

0x71 0000
- 71 0003

TCR1 Timing control register 1 Internal Control
of EBus2

R/W W

0x71 0004
- 71 0007

TCR2 Timing control register 2 Internal Control
of EBus2

R/W W

114 Peripheral Component Interconnect Input Output Controller • March 1997

0x71 0008
- 71 000B

TCR3 Timing control register 3 Internal Control
of EBus2

R/W W

0x72 0000 FLP_AUX Floppy auxio register Internal Register
of Ebus2

R/W W

0x72 2000 AUD_AUX Audio auxio register Internal Register
of Ebus2

R/W W

0x72 4000 PWR_AUX Power auxio register Internal Register
of Ebus2

R/W W

0x72 6000 LED_AUX LED auxio register Internal Register
of Ebus2

R/W W

0x72 8000 PMD_AUX PCI/Mode auxio register Internal Register
of Ebus2

R W

0x72 A000 FREQ_AUX Frequency auxio register Internal Register
of Ebus2

R W

0x72 C000 OSC_AUX SCSI Oscillator auxio
register

Internal Register
of Ebus2

R/W W

0x72 F000 TEMP_AUX Temp. sense auxio
register

Internal Register
of Ebus2

R/W W

0x73 0000
- 73 00FC

BNK0 DMA FIFO bank 0 Bank 0 (64 words) R/W W

0x73 0100
- 73 01FC

BNK1 DMA FIFO bank 1 Bank1 (64 words) R/W W

TABLE 7-1 EBus2 Address Map (Continued)

Address Name Description Device R/W Access

Chapter 7 EBus2 Channel Engine 115

Note – Devices associated with Ebus chip selects in the preceding table are
recommended devices. It is imperative that the PROM should be in the address
range shown. The EBus2 has 24 Megabytes of address space. The address space for
PROM is 16 Megabytes while the other EBus2 devices and internal registers occupy
8 Megabytes of address space. In a PCI based system the base address of the devices
can be configured through configuration registers.

TABLE 7-2 DMA registers

Address
Offset Name Description R/W Access

DMA Controller 1

0x70 0000 DCSR1 DMA1 CSR register R/W W

0x70 0004 DACR1 DMA1 address count register R/W W

0x70 0008 DBCR1 DMA1 byte count register R/W W

DMA Controller 2

0x70 2000 DCSR2 DMA2 CSR register R/W W

0x70 2004 DACR2 DMA2 address count register R/W W

0x70 2008 DBCR2 DMA2 byte count register R/W W

DMA Controller 3

0x70 4000 DCSR3 DMA3 CSR register R/W W

0x70 4004 DACR3 DMA3 address count register R/W W

0x70 4008 DBCR3 DMA3 byte count register R/W W

DMA Controller 4

0x70 6000 DCSR4 DMA4 CSR register R/W W

0x70 6004 DACR4 DMA4 address count register R/W W

0x70 6008 DBCR4 DMA4 byte count register R/W W

116 Peripheral Component Interconnect Input Output Controller • March 1997

7.3 EBus2 Slave Interface Description
The EBus2 slave interface provides the ability to do slave cycles on the EBus2. The
EBus2 slave interface provides eight chip selects. The Slave cycle timings on EBus2 is
programmable. Timing control is provided for 7 address ranges which correspond to
ranges shown for EB_CS1_ through EB_CS7_ in TABLE 7-1. The timing control for the
EBus2 slave cycles is provided in timing Control register 2 (TCR2) and timing
control register 3 (TCR3). At the boot time OBP programs these registers. The timing
access to address range corresponding to EB_CS0_ is hardwired. The PROM resides
in the address space corresponding to EB_CS0_.

The EBus2 is a multiplexed address and data bus and requires external logic to latch
the address for each slave cycle. External latches are used to store the address 23:8.

7.3.1 Functional Description
Each EBus2 slave cycle consists of two phases, an address phase and a data phase.

7.3.1.1 Address Phase

The Ebus2 provides 8 data lines and 8 address lines. The EBus2 slave cycle begins
with an address phase. During the address phase all data and address lines in
conjunction with CLKEN signals are used to latch address bits 23:8 in external
latches. When the EBus2 slave interface is in byte stacking mode, the first transfer
requires latching of address bits 23:8, while each successive transfer can take place
without incurring an extra cycle for latching the address as Ebus2 address lines
provides 8 least significant bits of address.

7.3.1.2 Data Phase

The data phase starts at the end of the address phase by the assertion of EB_CSx_.
The actual data is transferred during this phase. The cycle time for the data phase
can be programmed through Timing control registers. Refer to Section 7.5.2. This
section describes the register set for the EBus2 channel engine for details on the
parameters that can be programmed. During the Data phase, Data is provided on
Ebus2 data lines and lower byte of address is provided on address lines. This
operation is in contrast to the address phase where all data and address lines are
used to provide address 23:8.

Chapter 7 EBus2 Channel Engine 117

7.3.1.3 Byte Stacking

The Ebus2 slave interface supports two and four bytes stacking for the Ebus2
devices. The byte stacking is done in the little endian format. A four byte slave
buffer is provided to aid in byte stacking and buffered writes. During the byte
stacking a word (32 bit) or a half word (16 bit) can be initiated on the PCI side. The
Ebus2 controller will break the half word or word needed to be transferred on the
PCI side in bytes on the Ebus2. This mechanism allows better utilization of PCI bus.

7.3.1.4 Buffered Slave Transfers

EBus2 channel engine supports buffered write cycles for host writes which implies
that it acknowledges the completion of a write cycle to the PCI bus adapter, before
the write cycle is actually completed on the EBus2. This reduces the duration of
write cycle on the PCI bus. The EBus2 channel engine has a 4 byte slave buffer. It
acknowledges the bus interface immediately if the buffer has space for the transfer
size required.

7.3.1.5 IOCHRDY

Any EBus2 slave or DMA device can extend the slave or DMA cycle by deasserting
the IOCHRDY signal. The EB_RD or EB_WR signal remains asserted for the entire
time IOCHRDY signal is negated. If the strobe width (Tstrb), as programmed in
timing control registers, is greater than this time, EB_RD or EB_WR will remain
asserted for Tstrb width. If IOCHRDY is not negated two EBus2 clock cycles before
the deassertion of EB_RD or EB_WR then IOCHRDY is ignored.

7.3.1.6 Slave Transfer Size

The Ebus2 address space can be accessed as byte, half word (two bytes) and word
(four bytes). EBus2 channel engine does the byte stacking for half word and word
transfers. Any other transfer size will result in an error acknowledgment.

7.4 EBus2 DMA Interface Description
This section details the operation of the EBus2 DMA interface. The PCIO EBus2 has
four DMA engines. Each DMA controller provides similar programmers interface as
SCSI DMA controller (ESP interface) of the DMA2 chip, though there are some
differences between two implementations. These are listed in Section 7.4.1.7,
“Differences between EBus2 DMA Engine and SCSI DMA of DMA2”. All controllers

118 Peripheral Component Interconnect Input Output Controller • March 1997

are functionally identical and general purpose to interface with ISA/Intel style slave
DMA devices. All DMA controllers support both chained and unchained modes of
operation.

Each engine has a DMA address counter (DACR), a DMA byte counter (DBCR), a
DMA next address register (DNAR), a DMA next byte count register (DNBR) and a
DMA control and status register (DCSR). A 128 byte buffer is provided for each
DMA controller. The transfer size to system memory is programmable for each DMA
controller.

The DMA cycle time for each controller can be programmed through timing control
register 1 (TCR1). The priority algorithm of the EBus2 DMA controllers is also
programmable and can be programmed through the timing control register 3
(TCR3).

The functional description of DMA controllers follows. The description applies to all
DMA controllers.

7.4.1 Functional Description
EBus2 DMA controllers support programmable transfer sizes. Transfer sizes of four,
sixteen, thirty two and sixty four bytes are supported. The transfer size (TSIZE) can
be programmed by the “BURST_SIZE” bits of the DCSR.

7.4.1.1 Transfers From System Memory (DMA Read)

When the buffer of any DMA controller has space for TSIZE bytes, it will initiate a
DMA read from system memory. A read ahead is done if it does not cross the page
boundary. These bytes are transferred to the EBus2 device, associated with the DMA
controller, when it asserts the DMA request (DREQx) signal and the priority of the
device is highest in the priority queue. Refer to timing diagrams for the EBus2 DMA
cycles.

7.4.1.2 Transfers To System Memory (DMA Write)

The TSIZE bytes are gathered by the DMA controller before initiating a DMA write
to system memory. These bytes are transferred from the EBus2 device, associated
with the DMA controller, when it asserts the DREQx signal and the priority of the
device is highest in the priority queue.

Chapter 7 EBus2 Channel Engine 119

7.4.1.3 Chained Mode

Each EBus2 DMA controller provides an optional chained mode of operation.
Chaining provides a mechanism of overcoming the interrupt latency at the end of
transfer by providing a set of DMA next address register (DNAR) and DMA next
byte count register (DNBR). The software can load these registers while DMA is
occurring. The contents of DNAR and DNBR are copied to DACR and DBCR
respectively, when the value in DBCR expires. Thus the DMA is not subjected to the
delay for updating DACR and DBCR.

The chaining can be enabled in any EBus2 DMA controller by setting the EN_NEXT
bit of DCSR of the respective DMA engine.

7.4.1.4 End of Transfer (Terminal Count)

The DBCR decrements for an EBus2 DMA engine on each DMA byte transferred to
or from the EBus2 device. When the byte count expires a terminal count signal (TCS)
is given to the associated EBus2 device to terminate the DMA transfer on the EBus2.
On a terminal the count following events happen on the host side of the EBus2 DMA
engine.

■ For the DMA read, all the remaining bytes in the DMA buffer are discarded then
an interrupt is generated to the host if TCI_DIS = 0 and INT_EN =1, in DCSR

■ For the DMA write, the remaining bytes in the buffer are transferred to system
memory with a succession of the largest legal transfer size (64 bytes, 32 bytes, 16
bytes, 4 bytes, 2bytes, 1 byte). Hardware will ensure that all the bytes from the
FIFO will be drained. The terminal count signal (TCS) to the EBus2 device is
asserted as soon as byte count expires but the terminal count interrupt to the host
is held off until the DMA transfer to the memory is complete (i.e.- automatic
draining until DMA FIFO is empty)

7.4.1.5 EBus2 Device Acknowledgment

During a DMA transfer on the EBus2, once a device is given the use of the EBus2 it
can transfer data until the following conditions happen.

■ Device deasserts DMA request (DREQx) signal

■ A slave cycle on the EBus2 occurs. An ongoing DMA burst cycle on the EBus2
will be held off to let the slave cycle complete. The DMA burst cycle will resume
after the completion of the slave cycle

■ The EBus2 DMA buffer will become empty while doing DMA read, or full in case
of doing DMA write. In this situation the next EBus2 device in the priority queue
will be acknowledged

■ A host bus Error occurs. The next EBus2 device in the priority queue will be
acknowledged

120 Peripheral Component Interconnect Input Output Controller • March 1997

■ During chaining the DBCR expires and the DNBR and DNAR are not loaded. The
next device in the priority queue will be acknowledged

■ DMA is disabled by writing a “0” to EN_DMA bit of DCSR. In this case no more
data is transferred to or from the currently active device on the EBus2. DBCR of
the controller holds the current value. If a transfer from or to the memory is in
progress it is completed. When DMA is disabled through this mechanism the next
device in the priority queue gets the use of the EBus2

■ Sixty four successive bytes are transferred to a single device. After that the DMA
controller has to rearbitrate

7.4.1.6 Host Bus Errors

When an EBus2 DMA controller has communicated the information regarding the
host bus errors it halts and does not give any more data to the currently active DMA
device on the EBus2. No more data is transferred to or from the memory. DACR and
DBCR hold the current values. Bus error ERR_PEND bit gets set in DCSR, if INT_EN
bit is “1” in DCSR, an interrupt is generated. The DMA _ON bit gets cleared in the
DCSR.

7.4.1.7 Differences between EBus2 DMA Engine and SCSI DMA of
DMA2

This section describes the differences between the EBus2 DMA engine and the
DMA2 SCSI DMA engine. This section will be updated as additional differences
between the two designs become apparent.

1. EBus2 DMA engine issues the terminal count interrupt when all the FIFO data is
drained after the expiration of DBCR for DMA writes. The DMA2 SCSI DMA
engine issues a terminal count interrupt as soon as the byte counter expires
without waiting for all the FIFO data to be drained to the memory.

2. Transfer size of 1 byte, 2 bytes, 4 bytes, 16 bytes, 32 bytes and 64 bytes are
supported by EBus2 DMA engine compared to 1 byte, 2 bytes, 4 bytes, 16 bytes
and 32 bytes supported by DMA2 SCSI DMA engine.

3. These bits of SCSI DMA CSR of DMA2 will not be supported by the EBus2 DMA
CSR: D_SLAVE_ERR, D_DIAG, D_TWO_CYCLE, D_FASTER, D_DRAINING (one
bit instead of two).

4. The DMA cycles for the EBus2 DMA engine offers greater programmability
compared to DMA2. Separate timing control registers are provided which offer
range of programmable parameters.

5. The diagnostic mechanism will be different for EBus2 DMA engine and DMA2
SCSI DMA engine.

Chapter 7 EBus2 Channel Engine 121

6. The Address counter in the EBus2 DMA engine always points to the next byte
that has to be accessed in the memory. The DMA2 SCSI DMA engine points to the
next byte that will be accessed by the SCSI device, independent of which bytes in
the memory have been accessed by the DMA engine.

7.4.2 Priority Mechanism
Since EBus2 has limited bandwidth and it is possible that bandwidth requirements
for different devices on the EBus2 differ from each other, two priority schemes are
provided for the DMA devices on the EBus2 to optimize the use of the EBus2. The
Timing control register 3 (TCR3) provides a bit (PR) which can be programmed on
the boot time to choose between the two schemes. The encoding of the bit in TCR3 is
shown in TABLE 7-3.

The priority of EBus2 DMA controller 1 can be increased by level 2 priority, since
Parallel port is the device which may require much more bandwidth than the other
identified devices on the EBus2, it is recommended that parallel port should be
connected to EBus2 DMA controller 1 with Level 2 priority.

The priority schemes are as follows:

7.4.2.1 Level 1

The scheme for level 1 priority is round robin, starting from controller 1. The scheme
is as follows:

controller 1 → controller 2 → controller 3 → controller 4 → controller 1 → controller
2 → controller 3 → controller 4 →...

7.4.2.2 Level 2

This scheme gives every second priority to controller 1. The scheme is as follows:

controller 1 → controller 2 → controller 1 → controller 3 → controller 1 → controller
4 →...

TABLE 7-3 Encoding of Timing control register 3 PR bit

PR Priority Level

0 2

1 1

122 Peripheral Component Interconnect Input Output Controller • March 1997

7.4.3 Data Rates of EBus2 DMA Devices
Currently two DMA devices are identified on the EBus2. These devices are SUPERIO
(provides DMA channels for parallel port and floppy disk) and Audio Codec
(provides DMA channels for Play back and capture). TABLE 7-4 illustrates the
maximum data rate supported by these channels and latency tolerance per effective
size of DMA FIFO. Where,

Effective Size of DMA FIFO = Total FIFO bytes - TSIZE bytes

e.g. If an EBus2 DMA engine is used for parallel port and the TSIZE is programmed
by BURST_SIZE bits in DCSR as 64 bytes, then

Effective Size of DMA FIFO = 128 - 64 = 64 bytes

If the parallel port is transferring data at 2 Mbyte/sec, the DMA latency tolerance for
the parallel port channel engine is 32 µs (0.5 × 64= 32). This assumes that SUPERIO
does not have internal buffering in the parallel port channel. However, SUPERIO has
at least 16 bytes of internal buffering in the parallel port channel so the DMA latency
tolerance for the parallel port channel is actually 40 µs (32 + 0.5 × 16 = 40).

7.4.4 DMA Testing
Three bits are provided in DMA control and status register which help in testing the
DMA FIFO. The bits are DIAG_EN, DIAG_RD_DONE, DIAG_WR_DONE. The
following steps should be followed to make use of this testability feature.

■ After the reset the DMA address count register is written with the address from
which transfer is to be performed. The default direction of DMA transfer is READ
- from system memory to PCIO FIFO’s - following reset.

■ The DIAG_EN and bit is written as ‘1’ which puts the EBus2 DMA engine in the
diagnostic mode and initiates DMA activity.

TABLE 7-4 Data rate and Latency tolerance of EBus2 DMA devices

Channel Max. Data Rate
Latency tolerance per byte of effective

size of DMA fifo

Parallel Port 2 Mbyte/sec 0.5 µs

Audio (play back) 0.2 Mbyte/sec 5 µs

Audio (capture) 0.2 Mbyte/sec 5 µs

Floppy 0.125 Mbyte/sec 8 µs

Chapter 7 EBus2 Channel Engine 123

■ The EBus2 DMA engine starts to request the read data from the channel engine
interface with the size specified by the BURST_SIZ field in the DCSR register. This
will repeat until all transfers are made. At this point the 128 byte DMA FIFO is
full and DIAG_RD_DONE bit gets set and no more data transfer will take place.

■ The host will poll till the DIAG_RD_DONE bit is set. When the DIAG_RD_DONE
bit gets set the host will write a ‘1’ in RESET bit which will clear the
DIAG_RD_DONE status and initialize FIFO pointers.

■ Next the host will load the DACR with the address to which the DMA write is to
be performed. The DACR address needs to be the same offset as specified by the
BURST_SIZ field, i.e.: If BURST_SIZ is specified for 1 word, the DACR needs to be
at a minimum word aligned (pa[1:0] = 0’s).

■ The host will write a ‘1’ in the WRITE and DIAG_EN bits which will cause the
EBus2 DMA engine to start transferring data from the EBus2 FIFO across the
channel engine interface with the size specified by the BURST_SIZ field in the
DCSR register. This will repeat until the channel engine FIFO becomes empty.

■ When the channel engine interface indicates to the EBus2 channel engine that it
has dispatched the last byte of data (128th byte) to system memory, the
DIAG_WR_DONE bit gets set.

■ Now the host can verify that data it has received is actually the same data it wrote
to EBus2 channel engine.

■ To come out of diagnostic mode the RESET bit should be set in the DCSR register.

■ During the diagnostic mode only RESET and ERR_PEND bit are functional. The
other bits should be ignored.

7.5 EBus2 Register Description
This section describes the register set for the EBus2 channel engine.

7.5.1 AUXIO Registers
Eight registers are provided to support auxiliary I/O functions required by Sun
systems.

7.5.1.1 Floppy AUXIO Register

This register provides functions required by Sony  floppy drives.

124 Peripheral Component Interconnect Input Output Controller • March 1997

7.5.1.2 Audio AUXIO Register

This register provides power down for the Audio chip.

7.5.1.3 Power AUXIO Register

This register provides system power supply control bits.

7.5.1.4 LED AUXIO Register

This register provides system LED control.

TABLE 7-5 Floppy AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 Floppy density sense R/Input 1 = high Density

1 Floppy density select RW/Output 1 = 2 MB, 0 = 1.6 MB (HDD only)

31:2 Unused R/Internal Read as Zero

TABLE 7-6 Audio AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 CODEC powerdown RW/Output 1 = power down

31:1 Unused R/Internal Read as Zero

TABLE 7-7 Power AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 System poweroff RW/Output 1 = off

1 Courtesy poweroff RW/Output 1 = off

31:2 Unused R/Internal Read as Zero

Chapter 7 EBus2 Channel Engine 125

7.5.1.5 PCI/Mode AUXIO Register

This register provides PCI slot present bits and provide a bit to select between
motherboard and addin card mode.

7.5.1.6 Frequency AUXIO Register

This register provides bits for system frequency margining.

TABLE 7-8 LED AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 LED RW/Output 1 = on

31:1 Unused R/Internal Read as Zero

TABLE 7-9 PCI/Mode AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 PCI slot0 prsnt1 R/Input 1st bit for PCI slot 0

1 PCI slot0 prsnt2 R/Input 2nd bit for PCI slot 0

2 PCI slot1 prsnt1 R/Input 1st bit for PCI slot 1

3 PCI slot1 prsnt2 R/Input 2nd bit for PCI slot 1

4 PCI slot2 prsnt1 R/Input 1st bit for PCI slot 2

5 PCI slot2 prsnt2 R/Input 2nd bit for PCI slot 2

6 PCI slot3 prsnt1 R/Input 1st bit for PCI slot 3

7 PCI slot3 prsnt2 R/Input 2nd bit for PCI slot 3

8 Mode R/Input 0 = Motherboard

31:9 Unused R/internal Read as Zero

126 Peripheral Component Interconnect Input Output Controller • March 1997

7.5.1.7 SCSI Oscillator AUXIO Register

This register provides bits for SCSI oscillator control.

7.5.1.8 Temperature Sense AUXIO Register

This register provides bits for temperature sensor control.

TABLE 7-10 Frequency AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 Freq0 R/Input Frequency Margining status bit 0

1 Freq1 R/Input Frequency Margining status bit 1

2 Freq2 R/Input Frequency Margining status bit 2

31:2 Unused R/Internal Read as Zero

TABLE 7-11 SCSI oscillator AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 Int. SCSI OscEN RW/Internal Reset to 1, 0 = disable SCSI clk

1 Ext. SCSI OscEN R/Input Reflects scsi_oscen pin

31:2 Unused R/Internal Read as Zero

TABLE 7-12 Temperature sense AUXIO register bit definitions

Bit # Bit Name Access/Direction Comments

0 tsens clk RW/Output Temperature sensor clock

1 tsens cs_l RW/Output Temperature sensor chip select

2 tsens en_l RW/Internal Temperature sensor enable

3 tsens data out R/Output Temperature sensor data out

4 tsens data in R/Input Temperature sensor data in

31:2 Unused R/Internal Read as Zero

Chapter 7 EBus2 Channel Engine 127

7.5.2 Timing Control Registers
Three registers are provided to control the following functions:

■ Setup time (Tsu) and Hold time (Thld) of EB_CSx_ or DACKx_ with respect to
EB_RD_ or EB_WR_ strobe.

■ Minimum deassertion time or Recovery time (Trec) between consecutive EB_RD_
or EB_WR_ strobes.

■ Width (Tstrb) of EB_RD_ or EB_WR_ strobes.

■ Selection of DMA priority Algorithm.

FIGURE 7-2 illustrates the timing parameters which can be controlled through timing
control registers.

Timing control registers are programmed at boot time. They should not be touched
after the boot time. Note the timing given in timing control register tables is in terms
of number of EBus2 clocks. EBus2 clock is same as the PCI clock which has a period
of 30 ns.

7.5.2.1 Timing Control Register 1 (TCR1)

This register controls the strobe width (Tstrb) of EB_RD_ and EB_WR_ signals and
recovery time (Trec) for them during DMA cycles on the EBus2. Timing control is
provided for all four DMA controllers. This register also controls the setup time
(Tsu) and hold time (Thld) for EB_RD_ or EB_WR_ signals with respect to DACKx
signal. The general encoding of bits is in TABLE 7-13, TABLE 7-5 and TABLE 7-15, where
DTrec0n, DTrec1n, DTrec2n selects the recovery time (Trec) for EB_RD_ or EB_WR_
strobes. DTstrb0n, DTstrb1n, DTstrb2n selects the EB_RD_ and EB_WR_ strobe width
(Tstrb). DTsun and DThldn shows the setup (Tsu) and hold time (Thld) for the DMA
controller ‘n’. TABLE 7-16 shows bit definitions of TCR1.

Thld

Tsu
Tstrb Trec

EB_CSx_/DACKx_

EB_RD_/EB_WR_

FIGURE 7-2 Programmable timing parameters

128 Peripheral Component Interconnect Input Output Controller • March 1997

TABLE 7-13 Recovery Time (Trec) based on TCR1 bit encoding

DTrec2n DTrec1n DTrec0n Trec (Number of EBus2 Clocks)

0 0 0 3

0 0 1 4

0 1 0 5

0 1 1 6

1 0 0 7

1 0 1 8

1 1 0 9

1 1 1 10

TABLE 7-14 Strobe width (Tstrb) based on TCR1 bit encoding

DTstrb2n DTstrb1n DTstrb0n Tstrb (EBus2 Clocks)

0 0 0 2

0 0 1 3

0 1 0 4

0 1 1 5

1 0 0 6

1 0 1 7

1 1 0 8

1 1 1 9

TABLE 7-15 Tsu and Thld based on TCR1 bit encoding

DTsun DThldn
Tsu (Number of EBus2

Clocks)
Thld (Number of EBus2

Clocks)

0 0 1 1

0 1 1 2

1 0 2 1

1 1 2 2

Chapter 7 EBus2 Channel Engine 129

7.5.2.2 Timing Control Register 2 (TCR 2)

TCR2 provides timing control for EB_CS1_ through EB_CS4_This register controls
the strobe width (Tstrb) of EB_RD_ and EB_WR_ signals and recovery time (Trec) for
them during the slave cycles on the EBus2. This register also controls the setup time
(Tsu) and hold time (Thld) for EB_RD_ or EB_WR_ with respect to EB_CSx signal.
The general encoding of bits is in TABLE 7-17, Table 7-18 and TABLE 7-19, where
STrec0n, STrec1n, STrec2n selects the recovery time (Trec) for EB_RD_ or EB_WR_

TABLE 7-16 Timing control register 1 (TCR1) bit definitions

Bit # Name Description R/W

2:0 DTrec21, DTrec11,
DTrec01

Bits to control Trec for DMA controller 1 R/W

5:3 DTstrb21, DTstrb11,
DTstrb01

Bits to control Tstrb for DMA controller 1 R/W

6 DTsu1 Bit to control Tsu for DMA Controller 1 R/W

7 DThld1 Bit to control Thld for DMA controller 1 R/W

10:8 DTrec22, DTrec12,
DTrec02

Bits to control Trec for DMA controller 2 R/W

13:11 DTstrb22, DTstrb12,
DTstrb02

Bits to control Tstrb for DMA controller 2 R/W

14 DTsu2 Bit to control Tsu for DMA Controller 2 R/W

15 DThld2 Bit to control Thld for DMA controller 2 R/W

18:16 DTrec23, DTrec13,
DTrec03

Bits to control Trec for DMA controller 3 R/W

21:19 DTstrb23, DTstrb13,
DTstrb03

Bits to control Tstrb for DMA controller 3 R/W

22 DTsu3 Bit to control Tsu for DMA Controller3 R/W

23 DThld3 Bit to control Thld for DMA controller 3 R/W

26:24 DTrec24, DTrec14,
DTrec04

Bits to control Trec for DMA controller 3 R/W

29:27 DTstrb24, DTstrb14,
DTstrb04

Bits to control Tstrb for DMA controller 3 R/W

30 DTsu4 Bit to control Tsu for DMA Controller 3 R/W

31 DThld4 Bit to control Thld for DMA controller 3 R/W

130 Peripheral Component Interconnect Input Output Controller • March 1997

strobes. STstrb0n, STstrb1n, STstrb2n selects the EB_RD_ and EB_WR_ strobe width
(Tstrb). STsun and SThldn shows the setup (Tsu) and hold time (Thld) for the Chip
selects ‘n’. TABLE 7-20 shows bit definitions of TCR2.

TABLE 7-17 Recovery Time (Trec) based on TCR2 bit encoding

STrec2n STrec1n STrec0n Trec (Number of EBus2 Clocks)

0 0 0 3

0 0 1 4

0 1 0 5

0 1 1 6

1 0 0 7

1 0 1 8

1 1 0 9

1 1 1 10

TABLE 7-18 Strobe width (Tstrb) based on TCR2 bit encoding

STstrb2n STstrb1n STstrb0n Tstrb (EBus2 Clocks)

0 0 0 2

0 0 1 3

0 1 0 4

0 1 1 5

1 0 0 6

1 0 1 7

1 1 0 8

1 1 1 9

Chapter 7 EBus2 Channel Engine 131

TABLE 7-19 Setup time (Tsu) and hold time (Thld) based on TCR2 bit encoding

STsun SThldn
Tsu (Number

of EBus2 Clocks)
Thld (Number

of EBus2 Clocks)

0 0 1 1

0 1 1 2

1 0 2 1

1 1 2 2

TABLE 7-20 Timing control register 2 (TCR2) bit definitions

Bit # Name Description R/W

2:0 STrec21, STrec11,
STrec01

Bits to control Trec for EB_CS1_ R/W

5:3 STstrb21, STstrb11,
STstrb01

Bits to control Tstrb for EB_CS1_ R/W

6 STsu1 Bit to control Tsu for EB_CS1_ R/W

7 SThld1 Bit to control Thld for EB_CS1_ R/W

10:8 STrec22, STrec12,
STrec02

Bits to control Trec for EB_CS2_ R/W

13:11 STstrb22, STstrb12,
STstrb02

Bits to control Tstrb for EB_CS2_ R/W

14 STsu2 Bit to control Tsu for EB_CS2_ R/W

15 SThld2 Bit to control Thld for EB_CS2_ R/W

18:16 STrec23, STrec13,
STrec03

Bits to control Trec for EB_CS3_ R/W

21:19 STstrb23, STstrb13,
STstrb03

Bits to control Tstrb for EB_CS3_ R/W

22 STsu3 Bit to control Tsu for EB_CS3_ R/W

23 SThld3 Bit to control Thld for EB_CS3_ R/W

26:24 STrec24, STrec14,
STrec04

Bits to control Trec for EB_CS4_ R/W

132 Peripheral Component Interconnect Input Output Controller • March 1997

Note – On reset all the bits are “1”.

7.5.2.3 Timing Control Register 3 (TCR3)

This register controls the Trec, Thld, Tsu and Thld for EB_CS5_ through EB_CS7_.
TCR3 provides timing for devices which need extra long strobe width or recovery
time. The encoding for the timing parameter is in TABLE 7-21.

TABLE 7-21 also provides timing with respect to actual parameters programmed in
TCR3 register e.g. Tstrb value of “0” programmed in Tstrb bits of a particular device
gives an actual Tstrb width of 2 clocks (0 + 2 = 2) on Ebus2 transfers to that device.

This register also provides a bit to choose between Level 1 and Level 2 DMA priority
algorithms. TABLE 7-22 shows bit definitions for TCR3

29:27 STstrb24, STstrb14,
STstrb04

Bits to control Tstrb for EB_CS4_ R/W

30 STsu4 Bit to control Tsu for EB_CS4_ R/W

31 SThld4 Bit to control Thld for EB_CS4_ R/W

TABLE 7-21 Encoding of timing parameters

Parameter programmed in TCR3 Actual Timing (# of clocks)

Tsun Tsu+1

Thldn Thld+1

Tstrbn Tstrb+2

Trecn Trec+ 3

TABLE 7-22 Timing control register 3 (TCR3) bit definitions

Bit # Name Description R/W

4:0 STrec45, STrec35, STrec25,
STrec15, STrec05

Bits to control Trec for EB_CS5_ R/W

7:5 STstrb25, STstrb15, STstrb05 Bits to control Tstrb for EB_CS5_ R/W

8 STsu5 Bit to control Tsu for EB_CS5_ R/W

TABLE 7-20 Timing control register 2 (TCR2) bit definitions (Continued)

Bit # Name Description R/W

Chapter 7 EBus2 Channel Engine 133

Note – On reset all the bits are “1”

7.5.3 DMA Registers
This section describes registers associated with each EBus2 DMA controller. The
description is given for one DMA controller and is the same for the other three DMA
controllers.

All unused register bits will be read as zero (RAZ). A write to these bits will have no
effect.

9 SThld5 Bit to control Thld for EB_CS5_ R/W

13:10 STrec36, STrec26, STrec16,
STrec06

Bits to control Trec for EB_CS6_ R/W

17:14 STstrb36,STstrb26,
STstrb16, STstrb06

Bits to control Tstrb for EB_CS6_ R/W

18 STsu6 Bit to control Tsu for EB_CS6_ R/W

19 SThld6 Bit to control Thld for EB_CS6_ R/W

24:20 STrec47, STrec37, STrec27,
STrec17, STrec07

Bits to control Trec for EB_CS7_ R/W

28:25 STstrb37,STstrb27,
STstrb17, STstrb07

Bits to control Tstrb for EB_CS7_ R/W

29 STsu7 Bit to control Tsu for EB_CS7_ R/W

30 SThld7 Bit to control Thld for EB_CS7_ R/W

31 PR DMA priority select. 0 = Level 2 R/W

TABLE 7-22 Timing control register 3 (TCR3) bit definitions (Continued)

Bit # Name Description R/W

134 Peripheral Component Interconnect Input Output Controller • March 1997

7.5.3.1 DMA Control and Status Register (DCSR)

This register contains all control and status bits associated with the EBus2 DMA
controller. The bit definitions are shown in TABLE 7-23.

TABLE 7-23 EBus2 DMA CSR Register

Bit # Name Description R/W

0 INT_PEND Set when EBus2 device associated with the
DMA engine issues an interrupt or when the
EBus2 DMA engine issues an interrupt

R

1 ERR_PEND Set when a host bus error is detected R

2 DRAIN This bit is set when the FIFO data is being
drained to memory

R

3 Reserved - Read as zero

4 INT_EN When set enables the interrupt to be
generated when INT_PEND or ERR_PEND
are set

R/W

5 Reserved - Read as zero

6 Reserved - Read as zero

7 RESET When set invalidates the FIFO, resets the
channel DMA engine. Software must write ‘0’
to clear

R/W

8 WRITE DMA direction
0 — DMA Read from memory to device
1 — DMA Write from device to memory

R/W

9 EN_DMA If set enables DMA function of the DMA
engine

R/W

10 CYC_PENDING When set, indicates a DMA cycle is currently
active or pending. Not safe to clear RESET
when this bit is set

R

11 DIAG_RD_DON
E

In diagnostic mode when this bit is set, the
DMA read is completed

R

12 DIAG_WR_DON
E

In diagnostic mode when this bit is set, the
DMA write is completed

R

13 EN_CNT When set enables byte counter R/W

14 TC Terminal count; set when byte count has
expired.Write ‘1’ to clear

R/W

15 Reserved - Read as zero

Chapter 7 EBus2 Channel Engine 135

Note – On Reset all the register bits except ID will be “0” and CYC_PENDING will
reflect the status of any pending requests.

DCSR Bit Function Notes

INT_PEND - Bit 0

Set when the EBus2 device associated with the DMA engine issues an interrupt, or
when TC is set and TCI_DIS not set, Cleared otherwise.

16 DIS_CSR_DRN When set disables draining of FIFO on slave
writes to DCSR.

R/W

17 Reserved - Read as zero

19:18 BURST_SIZE Defines transfer size to and from system
memory:
00 — 16 bytes (4 word)
01 — 32 bytes (8 word)
10 — 4 bytes (1 word)
11 — 64 bytes (16 word)

R/W

20 DIAG_EN When set, DMA diagnostic loopback mode is
enabled

R/W

21 Reserved - Read as zero

22 DIS_ERR_PEND When set, an Error Pending condition will
not cause an external interrupt or halt DMA
activity

R/W

23 TCI_DIS When set, disables TC from generating an
interrupt. Defaults to 0

R/W

24 EN_NEXT When set enables next address auto load
mechanism. EN_CNT must also be set

R/W

25 DMA_ON When set indicates that DMA engine is able
to respond to DMA requests

R

26 A_LOADED Address loaded. Set when DACR written or
DNAR is copied to DACR

R

27 NA_LOADED Next address loaded. Set when DNAR is
written

R

31:28 DEV_ID Device ID = 0xC R

TABLE 7-23 EBus2 DMA CSR Register (Continued)

Bit # Name Description R/W

136 Peripheral Component Interconnect Input Output Controller • March 1997

ERR_PEND - Bit 1

DMA to/from the channel engine is stopped while this bit is set. ERR_PEND is reset
by setting RESET.

DRAIN - Bit 2

When the FIFO is draining to memory this bit is set. Do not assert RESET or write to
DACR register when set. DRAINING bit is not valid while ERR_PEND is set or
during transfers to the EBus2 device. In these cases, the DRAINING bit should be
ignored.

INT_EN - Bit 4

When set enables the interrupt to be generated when INT_PEND or ERR_PEND is
set.

RESET - Bit 7

RESET will remain active once written as a one until written as a zero, unless cleared
by a host Bus reset. Setting RESET or asserting host bus reset will invalidate the
FIFO and reset all the channel engine state machines to their idle states. If
ERR_PEND=0 when RESET is set, all dirty data in the channel engine FIFO will first
be drained to memory. When this occurs, RESET must not be cleared until draining
is complete, as indicated by DRAINING = 0. If ERR_PEND=1 when RESET is set, no
draining will take place and all dirty data in the FIFO will be discarded.

WRITE - Bit 8

Controls the direction of the DMA transfer. ‘1’ indicates DMA write from a device to
memory.

EN_DMA - Bit 9

This bit enables the DMA function of the DMA engine.

DIAG_RD_DONE - Bit 11

This bit gets set when in diagnostic read mode the DMA engine FIFO is full. This is
cleared when DIAG_RD_EN bit gets cleared.

EN_CNT- Bit 13

It enables the EBus2 DMA engine byte counter to be used during DMA transfers.

TC - Terminal Count - Bit 14

The TC bit will be set when DBCR makes a transition from 0x000001 to 0x000000.
When it is set, an interrupt will be generated, if enabled by INT_EN and not
disabled by TCI_DIS.

Chapter 7 EBus2 Channel Engine 137

When EN_NEXT= 0, TC is cleared by RESET or host bus reset. When EN_NEXT= 1,
TC can also be cleared by writing a 1 to the TC bit itself.

DIAG_WR_DONE - Bit 15

This bit gets set when the host bus adapter tells the EBus2 DMA engine that it has
transferred the 128th byte to the system memory. This is cleared by writing a “1” to
the RESET bit.

DIS_CSR_DRN - Bit 16

When set disables the draining of FIFO on writes to DCSR.

BURST_SIZE - Bits 19:18

This field defines the transfer size used by the DMA engine for host bus transfers.
All reads from memory will be one size, either 16, 8, 4, or 1 word. Writes to memory
can be byte, half-word or one of the burst sizes given in the TABLE 7-24. The DMA
engine will always use the largest possible size for writes, which is dependent on
BURST_SIZE and the number of bytes that need to be drained. Also, BURST_SIZE
determines the draining level of the FIFO. When the FIFO has been filled with this
amount of data, it will always be drained to memory. The sizes given in the
following table are in words. Where word is 4 bytes.

TCI_DIS - Bit 23

When set, disables TC from generating an interrupt. Defaults to 0.

EN_NEXT - Bit 24

When set, enables next address auto loading mechanism.

DMA_ON - Bit 25

Reads as 1 when (A_LOADED or NA_LOADED) & EN_DMA & NOT (ERR_PEND);
otherwise reads as 0. When set, indicates that DMA engine is able to respond to
DMA requests from the EBus2 device.

TABLE 7-24 Encoding for the BURST_SIZE bits

BURST_SIZE Read Burst Size Write Burst Sizes FIFO Draining
Level

00 4 words 4 words 4 words

01 8 words 8 words 8 words

10 1 word 1 word 1 word

11 16 words 16 words 16 words

138 Peripheral Component Interconnect Input Output Controller • March 1997

A_LOADED & NA_LOADED - Bits 26 and 27.

These bits define the validity of the values stored in the DACR and DNAR registers.
A_LOADED is set when DACR is written directly or when DNAR is copied to
DACR, and is reset by RESET or DBCR expiring.

NA_LOADED is set when DNAR is written. It is reset by RESET, EN_NEXT = 0, or
DNAR being copied to DACR.

When the state is reached where a valid DNAR has been loaded and the current
DACR has been marked as invalid (NA_LOADED = 1 & A_LOADED = 0), then the
contents of the DNAR register are copied to the DACR register. The copy takes place
on the same clock edge where the stated condition is sampled as true. If address
chaining has been set up to take place when the byte count expires, the actual
sequence of events will be the following: First, A_LOADED will be cleared (on
expiration of byte count). Second, the DNAR will be copied to the DACR register.
These two events will probably be seen as one by software.

DEV_ID - Bits 31:28

These bits give device ID for the DMA device.

7.5.3.2 DMA Address Count Register (DACR) and DMA Next
Address Register (DNAR)

The value in these registers after a RESET is indeterminate.

The Address Register is a 32-bit loadable counter which always points to the next
byte that will be accessed in the memory.

If the EN_NEXT (enable next address) bit in the DCSR is set, then a write to the
DACR register will write to the DNAR register instead. If EN_NEXT is set when the
byte counter (DBCR) expires, and the DNAR register has been written since the last
time the byte counter expired, then the contents of DNAR are copied into DACR. If
EN_NEXT is set when the byte counter (DBCR) expires, but the DNAR register has
not been written since the last time the byte counter expired, then DMA activity is
stopped and DMA requests from the EBus2 device will be ignored until DNAR is
written, or EN_NEXT is cleared. (Also, the DMA_ON bit will read as 0 while DMA

TABLE 7-25 DACR and DNAR bits

Bit Mnemonic Description Type

31:0 DACR Address Counter R/W

31:0 DNAR Next Address Register W

Chapter 7 EBus2 Channel Engine 139

is stopped because of this). When DMA is re-enabled by writing to the DNAR
register, the contents of DNAR are copied into DACR before DMA activity actually
begins.

If the DNAR register is written before the DACR register has been written, the
address written to DNAR will immediately be copied into DACR. When this occurs,
it also causes the value in the DNBR register to be copied into the DBCR register.
This allows for a shortcut in loading both DACR and DNAR along with DBCR and
DNBR by writing the registers in the following sequence: DNBR, DNAR, DNBR,
DNAR. When the first value is written into DNAR, it is immediately copied into
DACR since DACR hasn’t been loaded yet. This causes the first value that was
written into DNBR to be copied into DBCR. The second values written into DNBR
and DNAR then remain there as the actual next address and byte count. This allows
the loading of both the current and next address and byte count registers without
having to write the DCSR to change the EN_NEXT bit in between.

Note – A write to the DACR register will invalidate the FIFO. A write to the DNAR
register does not have this effect.

7.5.3.3 DMA Byte Count Register (DBCR) and DMA Next Byte
Register (DNBR)

The value in these registers after a RESET is indeterminate.

When reading this register as a word, bits 31:24 will read as 0’s.

When enabled, the Byte Counter is decremented every time a byte is transferred
between the DMA engine and the EBus2 device in a EBus2 DMA cycle. It is
decremented immediately after the byte has been transferred. It is not decremented
on slave accesses to the EBus2 or on transfers between the DMA engine and system
memory.

If the EN_NEXT bit in the DCSR is set, then a write to the DBCR register will write
to the DNBR register instead. Whenever the DNAR register is copied into the DACR
register, the DNBR register is copied into the DBCR register at the same time.

TABLE 7-26 DBCR and DNBR bits

Bit Mnemonic Description Type

23:0 DBCR Byte Count; counts down to 0, then sets the TC bit
in the DCSR

R/W

23:0 DNBR Next Byte Count Register W

140 Peripheral Component Interconnect Input Output Controller • March 1997

If DNAR is being copied into DACR and DNBR has not been written since the last
time DNBR was copied into DBCR, the last value that was written into DNBR will
again be copied into DBCR. This provides a shortcut in setting up consecutive DMA
transfers of equal size from different addresses, in that DNBR only needs to be
written once as long as DNAR is loaded for each successive transfer.

If EN_NEXT is not set when DBCR expires (changes from 0x000001 to 0x000000),
then DMA activity between the EBus2 device and the DMA engine will be stopped
and the DMA_ON bit will read as 0 until DACR is written.

7.6 Programming Notes

7.6.1 Timing Control Register Programming
The OBP at the boot time program values in the TCR1, TCR2 and TCR3 registers
according to timing and the nature of the EBus2 devices supported in a particular
system.

Here is an example of how timing control registers can be programmed for a
particular system. Let us consider that there is a system which is using 33 Mhz PCI
bus and EBus2 channel engine internal clock is running at the same frequency as PCI
bus i.e 33 Mhz (cycle time = ~30 ns). Let us further assume that there are 7 slave
devices and 4 DMA devices connected to the EBus2. OBP has to program the
following functions for this system:

7.6.1.1 Slave Cycle Time Programming

The Timing control is provided for 7 chip selects. These chip selects correspond to
EB_CS1_ through EB_CS7_ of TABLE 7-1. Here is an example of how to program a
slave cycle for a device “x” connected to EB_CS1_. Let us assume that the device “x”
has the following timing parameters (refer to FIGURE 7-2 for the definition of these
parameters):

Tsu = 20 ns

Thld = 0

Tstrb = 75

Trec = 70 ns

Chapter 7 EBus2 Channel Engine 141

To program Tsu for chip, select 1, bit 6 (STsu1) of TCR2 should be programmed as
“0” which gives a Tsu = 30 ns (1 EBus2 clock).

To program Thld for chip select 1, bit 7(SThld1) of TCR2 should be programmed as
“0” which gives a Thld = 30 ns (1 EBus2 clock).

To program Tstrb for address range 1, bits 5:3 (STstrb21, STstrb11, STstrb01) of TCR2
should be written as “001” which gives a Tstrb = 90 ns (3 EBus2 clocks).

To program Trec for chip select 1, bits 2:0 (Trec21,Trec11,Trec01) of TCR2 should be
programmed as “000” which gives a Trec = 90 ns (3 EBus2 clocks).

7.6.1.2 DMA Priority Programming

Let us suppose that one of the DMA channels in our example system has a much
higher data rate than the other three channels, so we will attach that device to DMA
controller 1 and program the priority algorithm as level 2. The DMA controller 1 will
potentially get every second DMA grant by the EBus2 internal priority controller. To
program the level 2 priority bit 31 (PR) of TCR3 should be programmed as “0”.

7.6.1.3 DMA Cycle Time Programming

The Timing control is provided for all four DMA controllers. Here is an example of
how to program DMA controller 1 which talks to a slave DMA device on the EBus2,
which has the following timing parameters:

Tsu = 40 ns

Thld = 20 ns

Tstrb = 100 ns

Trec = 100 ns

To program Tsu for DMA controller 1, bit 6 (DTsu1) of TCR1 should be programmed
as “1” which gives a Tsu = 60 ns (2 EBus2 clocks).

To program Thld for DMA controller 1, bit 7(DThld1) of TCR1 should be
programmed as “0” which gives a Thld = 30 ns (1 EBus2 clock).

To program Tstrb for DMA controller 1, bits 5:3 (DTstrb21, DTsrrb11, DTstrb01) of
TCR1 should be written as “010” which gives a Tstrb = 120 ns (4 EBus2 clocks).

To program Trec for DMA controller 1, bits 2:0 (DTrec21, DTrec11, DTrec01) of TCR1
should be programmed as “001” which gives a Trec = 120 ns (4 EBus2 clocks).

142 Peripheral Component Interconnect Input Output Controller • March 1997

7.6.2 DMA Register Programming

7.6.2.1 To set up a transfer to or from the EBus2 device using the
DMA engine

The transfer is set up by programming the internal byte count and address registers
of the DMA engine. To ensure that no error bits are set in the DCSR, the software
driver issues a RESET command. The driver then programs the WRITE, INT_EN,
EN_CNT, and TCI_DIS bits in the DCSR. These map to the following usages:

WRITE: determines direction of transfer

EN_CNT: set to override the EBus2 device byte count register
and use that of DMA engine

TCI_DIS: set to disable interrupts upon byte count = 0.

INT_EN: set to enable interrupts upon error conditions and
byte count = 0.

The EBus2 device is then programmed with the appropriate data for the particular
transfer. The EN_DMA bit is then set. This bit acts as a gate such that the DMA
engine will immediately begin to respond to EBus2 device requests for service.

The transfer will complete with one of three results: an error, in which case the
driver will poll the EBus2 device or the DMA engine for status, an interrupt, for
which the driver must provide service, or expiration of the byte count register.

7.6.2.2 To stop a transfer to or from the EBus2 device using the DMA
engine

The driver may suspend transfers between the EBus2 device and DMA engine at any
time by simply clearing the EN_DMA bit. The transfer is easily restarted by again
setting the EN_DMA bit.

7.6.2.3 Use of Internal Byte Counter with Next Address feature
disabled

When using the internal Byte Counter and the TC flag in the DCSR with EN_NEXT
= 0, it is necessary to perform the following procedure for correct operation:

Load Byte Count into DBCR

Load DMA address into DACR

Chapter 7 EBus2 Channel Engine 143

Load EBus2 Device with relevant command(s)

Load DCSR with enables and direction bits (EN_DMA, EN_CNT, and WRITE)

Data will be transferred as directed until the Byte Count expires, at which point the
TC flag will be set in the DCSR and an interrupt will be generated, if enabled. DMA
will also be stopped at this time (DMA_ON will be cleared). DMA will remain
stopped, independent of the value of EN_DMA, until DACR is loaded with a new
value.

Note – This implies that the interrupt service routine should clear EN_DMA before
writing a new address to DACR.

7.6.2.4 Use of Internal Byte Counter with Next Address feature
enabled

When using the internal Byte Counter, the TC flag in the DCSR and the NEXT
ADDRESS feature, it is necessary to perform the following procedure for correct
operation:

Note – This is a suggested procedure since several methods of programming the
chip are possible.

INITIALIZATION

Initialization if the state of the chip is not defined such as after an error.

Write Control register

TCI_DIS, EN_DMA, EN_NEXT, RESET = 0

EN_CNT, INT_EN = 1

WRITE = value as desired transfer direction

MULTIPLE BLOCK TRANSFERS

To do a multiple block transfer with an interrupt after each block:

Write Control register

INT_EN, EN_DMA, EN_CNT, EN_NEXT = 1

TCI_DIS, RESET = 0

WRITE = value as read or desired

144 Peripheral Component Interconnect Input Output Controller • March 1997

Write DBCR with byte count of the first block.

Write DACR with the starting address of the first block. Set-up and start the EBus2
device chip to do its transfer.

Write DNBR with the byte count of the “next” block.

Loading of the DNBR is optional because the initial loading of the DBCR also loads
the next count register.

Write DNAR with the address of the “next” block. The transfer of the first block is
enabled and the transfer of the next block will happen automatically when Terminal
Count is reached, i.e.: the next address and byte counts will be used. (This assumes
the loading of the NEXT count and address occur before the first block transfer is
complete.)

INTERRUPT

After each interrupt:

Read DCSR

TC and DMA_ON should both = 1.

If DMA_ON = 0 then, the DNAR register did not get updated or there is an error
pending, D_ERR_PEND. (It could also mean the DMA is not enabled, EN_DMA, or
the next address feature is not enabled, EN_NEXT, but they were set = 1 so this
should not be the case.)

Write DNBR with the byte count of the’next’ block.

Loading of the DNBR register is optional, but if loaded, must be loaded before the
DNAR register.

Write DNAR with the address of the’next’ block.

LAST BLOCK

If no Terminal Count interrupt is desired after the last block is transferred: (because
we expect an interrupt from the EBus2 device chip at the end of the transfer.)

On interrupt of the next to last block:

Read DCSR

TC and DMA_ON should both = 1.

Write DCSR

TCI_DIS, INT_EN, EN_DMA, EN_CNT, EN_NEXT = 1

RESET = 0

Chapter 7 EBus2 Channel Engine 145

WRITE = value as read or desired

The DNAR register is not loaded so the transfer will stop.

If terminal count interrupt is expected from the DMA engine then do the above
procedure except TCI_DIS = 0.

NEXT TRANSFER

The initialization for the next multi-block transfer is:

Write DCSR

INT_EN, EN_DMA, EN_CNT, EN_NEXT = 1

TCI_DIS, RESET = 0

WRITE = value as read or desired

This assumes the chip is in a known state because, if not, the write to the DBCR and
DACR registers may go to the NEXT registers (See INITIALIZATION).

Write DBCR with byte count of the first block.

Write DACR with the starting address of the first block.

Set-up and start the EBus2 device chip to do its transfer.

Write DNBR with the byte count of the’next’ block.

Loading of the DNBR is optional because the initial loading of the DBCR also loads
the next count register

Write DNAR with the address of the’next’ block.

TAKING ADVANTAGE OF ‘NEXT’ FEATURE

If an interrupt occurs and the ‘next’ address is not available, there is no room in the
buffer or data is not available, the processor can take advantage of the fail-safe
capability by not loading the DNAR and the DMA will stop when the count goes to 0.

After the ‘next’ address becomes known the processor must determine if the transfer
of the current block has completed. If it has not, the processor should load the “next”
count and address to continue the transfer. If the transfer has completed, the
processor should load the current count and address and the next count and next
address to restart the transfer.

146 Peripheral Component Interconnect Input Output Controller • March 1997

Notes –
There will be an interrupt generated when the count goes to zero.

The firmware must understand that if the transfer has stopped because the DNAR
was not loaded before the terminal count was reached, it is effectively loading the
DBCR and DACR registers, not the NEXT registers. This will enable the DMA to
restart the transfer.

It is necessary to load the count before the address because the loading of the
address register causes the restart of the transfer.

Interrupts from the EBus2 device are visible as INT_PEND in the DCSR. The
INT_EN bit is provided to enable or disable the generation of an interrupt. If an
error condition exists during a memory access the ERR_PEND bit will be set. This
will cause an interrupt (if enabled). Similarly, expiration of the Byte Counter will
cause the INT_PEND bit to be set and an interrupt (if enabled). The ERR_PEND bit
can only be cleared by a RESET command, or host bus reset.

Software should never set the RESET bits in the DCSR or write to the DACR register
while the EN_DMA bit is set or while the DRAINING bit is set.

Chapter 7 EBus2 Channel Engine 147

7.7 Timing Diagrams

7.7.1 EBus2 Slave Cycles

FIGURE 7-3 EBus2 slave read cycle

Ref./S_FastRD.td

A[23:16] D[7:0]

A[15:8] A[7:0]

EB_CLK

EB_A[7:0]

EB_D[7:0]

EB_Clken

EB_CSx_

EB_RD_

FIGURE 7-4 EBus2 Slave write cycle

Ref:./S_FastRD.td

A[23:16]

A[15:8] A[7:0]

D[7:0]

EB_CLK

EB_A[7:0]

EB_D[7:0]

EB_Clken

EB_CSx_

EB_WR_

148 Peripheral Component Interconnect Input Output Controller • March 1997

7.7.2 Ebus2 DMA Cycles

FIGURE 7-5 EBus2 DMA read cycle

VALID

EB_CLK

EB_Dreqx

EB_Dackx

EB_RD_

EB_D[7:0]

FIGURE 7-6 EBus2 DMA write cycle

VALID

EB_CLK

EB_Dreqx

EB_Dackx

EB_WR_

EB_D[7:0]

149

CHAPTER 8

Clock and Scan Control

8.1 Introduction
This section describes the testability features implemented in PCIO. These features
have been incoporated to provide a structured test approach to both ASIC
fabrication testing and board-level testing and debug.

8.2 Test and Debug Modes
PCIO provides several different test modes which can be used to verify the correct
functional behavior of the internal logic and I/O pad ring. These modes are
accessible via a JTAG compliant TAP controller. For more information on the JTAG
standard, refer to IEEE standard 1149.1-1990.

8.2.1 Boundary Scan Modes
PCIO utilizes boundary scan to provide control and visibility of the I/O pins during
manufacturing test. This control includes the ability to tristate the output pins. All
boundary scan modes required by the JTAG standard are supported by the TAP
controller.

150 Peripheral Component Interconnect Input Output Controller • March 1997

8.2.2 ATPG Mode
The ATPG scan chain provides a means to apply test pattern vectors to detect stuck-
at faults in the internal logic and is accessed by selecting the “atpg” instruction of
the TAP contoller. In this mode, the internal and boundary scan chains are muxed
together to form the ATPG chain. A single internal clock pulse is generated when
exiting the Capture-DR TAP state to capture the test vector result.

While the “atpg” instruction is selected, both the chip inputs and outputs are
defined by the contents of the boundary scan register.

ATPG vectors can also be applied via the “intscan” instruction. This instruction also
generates a clock pulse upon exiting Capture-DR but only the internal scan chain is
selected. I/O stimuli is driven and read by the tester instead of from the boundary
scan register. This instruction can be used for testers that have to serialize scan
vectors. Since the boundary scan chain no longer has to be shifted, fewer tester
vectors are required to apply the vector suite.

8.2.3 Debug modes

8.2.3.1 Dumping internal state

The internal scan chain can also be selected via the “debug” instruction. This
instruction is provided to allow for non-destructive internal node visibility during
lab debug. No capture clock is issued for this instruction.

While the “debug” instruction is selected, both the chip inputs and outputs are
defined by the contents of the boundary scan register.

8.2.3.2 Clock Controller

The clock controller deterministically stops PCIO’s internal clocks upon the
occurrence of an external event. The clock controller can only be accessed via the ccr
scan chain. This chain is selected via the “sel_ccr” instruction.

The clock controller consists of a stop enable bit and three synchronizers, one for
each of PCIO’s clock domains. When the stop enable bit is set, the stop_clock signal
will switch the source of the internal clocks from the clock pins to the JTAG
controller. This clock source switching is synchronized to the rising edge for each
clock domain.

Chapter 8 Clock and Scan Control 151

8.3 JTAG Controller
The JTAG controller consists of the following elements:

■ TAP controller and decode logic

■ Scan datapath

The JTAG controller allows the various test modes to be activated via the standard
JTAG signals (TCK, TMS, TDI, TRSTB and TDO). Each test mode may be activated
by shifting the appropriate instruction into the JTAG Instruction Register. The test
mode selected becomes active upon the TAP state machine leaving the Update-IR
state. When the JTAG controller is placed into its Test-Logic-Reset state, PCIO will
return to its normal operating mode.

152 Peripheral Component Interconnect Input Output Controller • March 1997

8.3.1 Control logic
The JTAG controller utilizes a custom TAP controller to instantiate the JTAG state
machine. The outputs of the TAP controller are then combined with the outputs of
the instruction register decoder to generate the test mode select and test clock
signals.

FIGURE 8-1 JTAG Logic Block Diagram

TRSTB

TMS

TCK

TDI

TAP

Controller

Clock_IR

Update_IR

Shift_IR

Instruction Reg

Update latch

Clock_DR
Update_DR
Shift_DR

test mode selects
bs_ien, bs_oen, etc.

Decoder

Control Logic

test mode selects,
test clocks, etc.

Resetb

Chapter 8 Clock and Scan Control 153

8.3.2 Scan Data Paths
The scan data paths are the various scan chains that are selected during a selected
test mode. The scan chains are as follows:

FIGURE 8-2 PCIO Scan Registers

All of the scan datapaths can operate at clock speeds up to 10 MHz.

The following table lists the correct scan chain lengths for each scan chain.

TABLE 8-1 Scan Chain Lengths

Chain Length

boundary 248

internal 5272

atpg boundary+internal

bypass 1

Boundary Scan Register

Internal Scan Chain

JTAG Instruction Register

JTAG ID Register

Bypass Register

TDI
mux

atpg_mode
bs_clk

test_clk

clock_ir

id_clk

byp_clk

mux
TDO

test mode
selects

Clock Control Registerccr_clk

154 Peripheral Component Interconnect Input Output Controller • March 1997

8.3.3 JTAG Instructions and ID

The following instructions are supported by the PCIO TAP. The table contains the
bit-value and mnemonic for each instruction and the scan chain accessed.
Instructions marked by “*” are required by the IEEE JTAG standard.

id 32

instruction 4

ccr 1

TABLE 8-2 JTAG ID fields

Version Part Number Manufacturer Identity LSB

0x1 0x1791 0x022 0x1

TABLE 8-3 JTAG Instructions

Value Instruction Scan Chain IMC OMC BCAP ICAP

0000 extest* boundary 0 1 1 0

0001 sample* boundary 0 0 1 0

0010 intscan internal 0 0 0 1

0011 atpg atpg 1 1 1 1

0100 debug internal 1 1 0 0

0101 reserved bypass 0 0 0 0

0110 clamp bypass 1 1 0 0

0111 intest boundary 1 1 1 0

1000 reserved bypass 0 0 0 0

1001 scsi_test bypass 0 0 0 0

1010 reserved bypass 0 0 0 0

1011 reserved bypass 0 0 0 0

1100 sel_ccr ccr 0 0 0 0

TABLE 8-1 Scan Chain Lengths (Continued)

Chain Length

Chapter 8 Clock and Scan Control 155

 * IMC 1 = core driven by BS cell, 0 = core driven by pin

 * OMC 1 = pin driven by BS cell, 0 = pin driven by core

 * BCAP 1 = Capture clock generated for BS cell, 0 = no clock

 * ICAP 1 = Capture clock generated for internal flops, 0 = no clock

1101 reserved bypass 0 0 0 0

1110 idcode id 0 0 0 0

1111 bypass* bypass 0 0 0 0

TABLE 8-3 JTAG Instructions (Continued)

Value Instruction Scan Chain IMC OMC BCAP ICAP

156 Peripheral Component Interconnect Input Output Controller • March 1997

