
NetBSD and handheld platforms
Valeriy Ushakov <uwe@Net BSD. or g>
Alistair Crooks <agc@Net BSD. or g>

The NetBSD Project

Abstract
NetBSD has long been known for its portability to other platforms. The

lower end of this range of platforms has included thin clients, and, most
recently, handheld PCs. These machines are typically powered by a low-power
CPU, and have smaller LCD screens than a laptop, and consequently dissipate
less power. These machines usually use a touch screen and a stylus for a
pointing device, can run for nearly a day on battery power only, and come with
some version of Windows in ROM for an operating system.

This paper discusses a number of issues related to porting NetBSD to
handheld PCs – the challenges, and the parts which are needed, including the
subsystems still to be written. It contrasts the various handheld PC devices on
the market, and looks at Linux support for these devices, as well as Windows
and NetBSD. It also looks at the challenges of handheld and pocket PCs, from
fitting a graphical browser onto a limited size LCD screen, to window
managers designed for mouse-equipped environments, to user interface issues
when no keyboard is present.

Finally, it looks into the future, and discusses what the ultimate geek
gadget PDA would be.

Introduction
The NetBSD operating system has been ported to a large number of processor families

and architectures: computers built around those CPUs range from high-end servers to small
computers like laptops, notebooks, and, now, PDAs, handheld PCs (H/PC) and pocket PCs
(PPC).

There are two aspects to porting NetBSD to a new platform:

• Porting to the new platform itself. This is occasionally referred to as the “Because it's
there” question. There are technical challenges to bringing up an operating system on a
new platform, and these are often the things that spur developers to take this lonely road.

• Once NetBSD has been ported to a new platform, the next challenge is to run NetBSD
on that platform, from porting third-party applications which may only have been
written with Linux and IA32/i386 architecture in mind, to the pure delight of debugging
some of those same applications. However, this is also the stage in which the
proselytizing of the platform, of NetBSD, and of the combination takes place.

At various conferences and trade shows, the handheld platforms have been the ultimate

“geek gadget” , which has garnered a large amount of interest, especially for its size. Of
course, the size, or lack of it, may be the reason for the interest – being able to use on-line
services such as IRC and electronic mail from a handheld computer with a wireless card is a
tremendous selling point, both for the platform and for NetBSD.

Target Platforms
All of the supported platforms are originally designed to run some version of Microsoft

Windows CE. Most future platforms are likely be Windows CE based as well.1

Terminology
Microsoft terminology in this area and their different version numbering schemes are

very confusing. The primary distinction that matters for our paper is:

• H/PC – Handheld PC. Keyboard, half or full size VGA display.
• PPC – Pocket PC. No built-in keyboard, quarter VGA display.

In general, we shall use the term "Personal Digital Assistants" (PDAs) throughout this
paper to cover both HPC and PPC.

Lack of built-in keyboard might prove to be a big problem for standalone interactive use,
unless something like QTopia or GPE is ported. However even PPC can be useful, perhaps in
combination with a third-party package like xscribble (pkgsrc/x11/xscribble) which allows a
user of a touch screen to input characters into X11 applications, using a uni-stroke (graffiti-
like) alphabet – it uses the Xtest extension to allow synthesis of characters as though they had
been typed on a keyboard.

Uses
HPCs are very useful as a mobile Unix terminal – they provide all the nice features of

“big” NetBSD: IPv6, IPSEC, WiFi, SSH, etc… E.g., one of the authors used his Jornada for
aiming a polarized WiFi aerial on a building’s rooftop. Laptop is just too bulky for that.
PPCs, unfortunately, are not usable for this currently (need QTopia/GPE).

PDAs can be used as a development platform – if you develop software for an embedded
platform with limited capabilities you can use NetBSD host as a development, debugging,
and testing machine. This use is probably most important for SuperH-based PDAs, as
“bigger” ARM and MIPS boxes are more easily available. Even for ARM and MIPS it might
be cheaper to buy a handheld then a big machine. Even keyboardless PPC are suitable for
this purpose.

These handhelds can be used as a PDA, bereft of Microsoft Office software (although
Windows CE Office components tend to be simplified and feature-lacking versions of the
traditional Microsoft Office components). Calendar, diary/agenda, spreadsheet, presentation
graphics, etc can all be done by using open source equivalents. Insert a broad hint to pkgsrc
folks here :)

As a musical juke box, an alternative to an iPod or a Creative Nomad, for playing MP3
or ogg files, again using traditional open source software to achieve this (it should be noted
that some of the versions of Windows Media Player on PDAs are burned into ROM, and so
upgrades are not usually an option – and early WMP have problems with VBR on some MP3
tracks).

By using the onboard Infra-red port, or USB 1.1 client, or onboard modem, the PDA can
be used as a GPS receiver, as well as having all of the benefits above.

Booting NetBSD
There are various ways which different operating systems can boot on these devices.

Usually, they will involve installing the alternative operating system onto a secondary storage

1 There’s also Symbian OS, but devices based on it are not as widespread. Even the recent sub-notebook from Psion
runs Windows CE.NET. We will not discuss Symbian based devices in this paper.

medium, such as a Compact Flash (CF) card - these are easy to find, have a large capacity,
and are inexpensive; prices have fallen over the last two years.

Typically, HPC and PPC machines have ROM, where the “native” operating system will
reside – this is typically Windows CE. Windows CE executes directly from ROM, thereby
leaving all available RAM free for applications and data. It is only really “booted” after a
hard reset. When suspended, it simply powers down all the devices and only spends a tiny bit
of power on refreshing the RAM.

Some of these machines, such as the iPAQ, have flashable ROMs, whilst others have
non-rewritable ROMs (such as the Jornada 600 and 700 series). Linux takes advantage of
rewritable ROMs, and so it’ s possible to flash Linux into the ROM on an iPAQ. At the
present time, NetBSD does not take advantage of this.

The NetBSD boot loader is, therefore, a separate program, and typically resides on
Compact Flash card or some other method of persistent storage, accessed by the native
operating system. This boot loader is then executed under the native operating system. The
following screenshots show hpcboot, a Windows CE program, being used to boot NetBSD on
a Jornada 690.

Figure 1. Selecting the kernel to boot and boot options

The figure above shows the “Kernel” tab of the hpcboot GUI, where the machine model
is selected, the kernel to boot and the type of the root file system are specified, and boot
options that can be entered.

The next figure shows the “Option” dialog, that controls hpcboot operation. The options
selected on this screenshot are good defaults.

Figure 2. Options that control hpcboot operation

Figure 3. Output from hpcboot and debugging options

Finally, the last tab, “Console” , features a large text area where hpcboot reports gory
details of its progress. There are also some anonymous buttons and checkboxes that are
intended to be used for hpcboot debugging.

When NetBSD boots the Windows CE in your ROM is safe, however all your data,
installed programs, etc will be lost. When NetBSD is shut down, Windows CE boots back as
if after hard reset.

An arrangement that one of the authors finds convenient is as follows:

• Partition the CF card into an MSDOS partition, and a NetBSD partition (you need to do
this on a Unix host). Your NetBSD installation will reside in the NetBSD partition of
the CF. More on this later.

• After a hard reset (you have already tried to boot NetBSD and lost all your data on the
device already, haven't you? ;), install all the Windows CE programs and drivers that
you need, configure the system to suit your needs (e.g. dialup settings), then do a full
backup. Put that full backup onto the DOS partition of your CF card. Saving another
backup copy somewhere else is a good idea as well. Add your PIM (personal
information manager) data, and then do a PIM-only backup. Put the PIM backup onto
the DOS partition of your CF card as well.

Make sure that you use the Windows CE backup program that is in your ROM! When
NetBSD is shut down, the Windows CE comes up from hard reset and no fancy add-on
backup programs that you have installed are available.

• Put the hpcboot.exe onto the DOS partition of the CF – you will need it to boot the
NetBSD.

• And the last piece you need on the DOS partition is the NetBSD kernel. Hpcboot can
boot kernels from the UFS partition, but having the kernel on the DOS partition is
convenient when you want to update it, or try out a new kernel – you can write new
kernel to the CF from any operating system, including the Windows CE itself.

So when planning the CF partitioning, you should take into account the space

requirements for the things listed above. It is prudent to make a backup in advance to see how
much space is used. It is advisable to have space for at least a couple of kernels and a
miniroot image, and to reserve some space for files that you want to move between Windows
and NetBSD. A partition of 16MB should be sufficient.

Installing NetBSD
So how would you install the NetBSD to the CF card? The standard NetBSD system

installer, sysinst, is not yet supported on HPC platforms. Adding HPC support to sysinst is

really a SMOP, but nobody has done the legwork yet. Thus, currently the easiest way is to
use another NetBSD host to do the installation. Hint: your HPC booted with root file system
on NFS qualifies!

If you have an i386 laptop running NetBSD you can connect your CF card to it using
either a USB flash card reader, or a CF to PCMCIA adaptor.

Before we proceed with a detailed walkthrough, here is the outline of the process:

• Partition the CF card into DOS and NetBSD partitions (see previous section).
• Disklabel the NetBSD partition.
• Create DOS and UFS file systems.
• Mount both partitions.
• Transfer hpcboot and kernel to the DOS file system.
• Extract installation sets to the NetBSD file system.
• Edit several files in / et c to pre-configure your system.
• Move the CF to the HPC and boot!

Installation Walkthrough
This installation walkthrough is based on the transcript taken during a from-scratch

installation of NetBSD/hpcsh.

Here is the CF card that we will do our sample installation onto:

wdc0 at pcmci a0 f unct i on 0
at abus2 at wdc0 channel 0
wd1 at at abus2 dr i ve 0: <Tr anscend 256M>
wd1: dr i ve suppor t s 1- sect or PI O t r ansf er s, LBA addr essi ng
wd1: 244 MB, 978 cyl , 16 head, 32 sec, 512 byt es/ sect x 500736 sect or s
wd1: dr i ve suppor t s PI O mode 4

We start by splitting the CF card into a small DOS partition and a NetBSD partition. It’s
important that the DOS partition comes first. Windows get very confused otherwise.

f di sk - u wd1
Di sk: / dev/ r wd1d
Net BSD di skl abel di sk geomet r y:
cyl i nder s: 978, heads: 16, sect or s/ t r ack: 32 (512 sect or s/ cyl i nder)
t ot al sect or s: 500736

BI OS di sk geomet r y:
cyl i nder s: 978, heads: 16, sect or s/ t r ack: 32 (512 sect or s/ cyl i nder)
t ot al sect or s: 500736

Do you want t o change our i dea of what BI OS t hi nks? [n] <ent er >

Par t i t i on t abl e:
0: Pr i mar y ' bi g' DOS, 16- bi t FAT (> 32MB) (sysi d 6)
 st ar t 32, s i ze 500192 (244 MB, Cyl s 0- 977) , Act i ve
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Whi ch par t i t i on do you want t o change?: [none] 0
The dat a f or par t i t i on 0 i s:
Pr i mar y ' bi g' DOS, 16- bi t FAT (> 32MB) (sysi d 6)
 st ar t 32, s i ze 500192 (244 MB, Cyl s 0- 977) , Act i ve
sysi d: [0. . 255 def aul t : 6] 1
st ar t : [0. . 978cyl def aul t : 32, 0cyl , 0MB] <ent er >
s i ze: [0. . 978cyl def aul t : 500192, 977cyl , 244MB] 14MB

boot menu: [] <ent er >
The boot sel ect code i s not i nst al l ed, do you want t o i nst al l i t now? [n] <ent er >

Par t i t i on t abl e:
0: Pr i mar y DOS wi t h 12 bi t FAT (sysi d 1)
 st ar t 32, s i ze 28640 (14 MB, Cyl s 0- 56) , Act i ve
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Whi ch par t i t i on do you want t o change?: [none] 1
The dat a f or par t i t i on 1 i s:
<UNUSED>
sysi d: [0. . 255 def aul t : 169] <ent er >
st ar t : [0. . 978cyl def aul t : 28672, 56cyl , 14MB] <ent er >
s i ze: [0. . 922cyl def aul t : 472064, 922cyl , 231MB] <ent er >
boot menu: [] <ent er >
The boot sel ect code i s not i nst al l ed, do you want t o i nst al l i t now? [n] <ent er >

Par t i t i on t abl e:
0: Pr i mar y DOS wi t h 12 bi t FAT (sysi d 1)
 st ar t 32, s i ze 28640 (14 MB, Cyl s 0- 56) , Act i ve
1: Net BSD (sysi d 169)
 st ar t 28672, s i ze 472064 (231 MB, Cyl s 56- 978)
2: <UNUSED>
3: <UNUSED>
Whi ch par t i t i on do you want t o change?: [none] <ent er >

We haven' t wr i t t en t he MBR back t o di sk yet . Thi s i s your l ast chance.
Par t i t i on t abl e:
0: Pr i mar y DOS wi t h 12 bi t FAT (sysi d 1)
 st ar t 32, s i ze 28640 (14 MB, Cyl s 0- 56) , Act i ve
1: Net BSD (sysi d 169)
 st ar t 28672, s i ze 472064 (231 MB, Cyl s 56- 978)
2: <UNUSED>
3: <UNUSED>
Shoul d we wr i t e new par t i t i on t abl e? [n] y

Now that partitions are ready we need to edit the NetBSD disklabel. We start by using
mbrlabel(8) that can update a NetBSD disk label from the Master Boot Record (MBR) label.

mbr l abel wd1
Found MSDOS par t i t i on; s i ze 28640 (13 MB) , of f set 32
 ski ppi ng exi st i ng MSDOS par t i t i on at s l ot e.
Found 4. 2BSD par t i t i on; s i ze 472064 (230 MB) , of f set 28672
 ski ppi ng exi st i ng unused par t i t i on at s l ot c.

6 par t i t i ons:
s i ze of f set f st ype [f s i ze bsi ze cpg/ sgs]
 c: 472064 28672 unused 0 0 # (Cyl . 56 - 977)
 d: 500736 0 unused 0 0 # (Cyl . 0 - 977)
 e: 28640 32 MSDOS # (Cyl . 0* - 55)
 f : 472064 28672 4. 2BSD 0 0 0 # (Cyl . 56 - 977)

Not updat i ng di sk l abel .

As we can see the disklabel is mostly complete, except that the NetBSD partition is
assigned to partition ‘ f’ . It doesn't make sense to create several UFS partitions (in the
disklabel sense) within the NetBSD MBR partition. In particular, note that we do not create
any swap partitions, as swapping to a CF card will wear it very fast. Let’s change NetBSD
partition letter to ‘a’ , as the kernel likes it better that way:

di skl abel - e wd1
[rename partition f->a]

di skl abel wd1
[...]
6 par t i t i ons:
s i ze of f set f st ype [f s i ze bsi ze cpg/ sgs]
 a: 472064 28672 4. 2BSD 0 0 0 # (Cyl . 56 - 977)
 c: 472064 28672 unused 0 0 # (Cyl . 56 - 977)
 d: 500736 0 unused 0 0 # (Cyl . 0 - 977)
 e: 28640 32 MSDOS # (Cyl . 0* - 55)

Now we format the two partitions we have just created:

newf s_msdos wd1e
/ dev/ r wd1e: 28584 sect or s i n 3573 FAT12 cl ust er s (4096 byt es/ c l ust er)
MBR t ype: 1
bps=512 spc=8 r es=1 nf t =2 r de=512 sec=28640 mi d=0xf 8 spf =11 spt =32 hds=16 hi d=32
newf s wd1a
/ dev/ r wd1a: 230. 5MB (472064 sect or s) bl ock s i ze 8192, f r agment s i ze 1024
 usi ng 6 cyl i nder gr oups of 38. 42MB, 4918 bl ks, 9472 i nodes.
super - bl ock backups (f or f sck - b #) at :
 [...]

Now the CF card is formatted, but is still completely empty. We will mount the freshly-
formatted file systems and will start filling them with contents. In the examples below “ ...”
stands for the directory with release sets (the directory you specified as an argument to the - R
flag of the bui l d. sh script if you did the build yourself). The examples below uses “hpcsh” .

Important: make sure you mount the DOS file system with the - l option (see BUGS in
mount_msdos(8)).

mount - o sof t dep / dev/ wd1a / mnt
mount - o - l / dev/ wd1e / mnt 2

We will start with the DOS file system. As we said above, we want to put hpcboot.exe
onto it:

cp . . . / hpcsh/ i nst al l at i on/ hpcboot - sh3. exe / mnt 2/ hpcboot . exe

and the NetBSD kernel:

t ar - x - p - z - f . . . / hpcsh/ bi nar y/ set s/ ker n- GENERI C. t gz - C / mnt 2

The hpcboot.exe boot program can boot kernels from UFS, so you can skip this step, and
extract the kernel to / mnt instead (where your NetBSD root partition of the CF card is
mounted).

For now we are done with the DOS partition.

Next we will unpack the NetBSD release sets. The simple loop below extracts all the
sets except the kernel (‘k’) and X11 (‘x’). We already extracted the kernel to the DOS
partition, so you always want to skip ‘k* ’ sets. As for the X11, if you have a 512MB CF, you
can as well extract them.

f or f i n . . . / hpcsh/ bi nar y/ set s/ [^kx] * . t gz; do
> t ar - x - p - z - f $f - C / mnt
> done

With your CF now fully populated all that remains is some final touches to system
configuration.

We create a mount point for the DOS partition:

cd / mnt
mkdi r cf

And if you have put the kernel on the DOS partition (as we did in the example above),
you create a symlink to the kernel. Strictly speaking, it's not necessary. NetBSD now uses
ksyms(4), so programs that traditionally needed access to the NetBSD kernel image to parse
its symbol table now use / dev/ ksyms .

l n - s cf / net bsd

Fix your localtime link:

cd / mnt / et c
r m l ocal t i me
l n . . / usr / shar e/ zonei nf o/ Eur ope/ Moscow l ocal t i me

Edit fstab(5). We only have two partitions to add. Note that we mount the root file
system with ‘noatime’ and ‘nodevmtime’ to reduce CF wear.

cd / mnt / et c
vi f st ab
[...]
cat f st ab
/ dev/ wd0a / f f s r w, noat i me, nodevmt i me 1 1
/ dev/ wd0e / cf msdos - l , r w 0 0

Edit rc.conf(5):

cd / mnt / et c
vi r c. conf
[...]
sed - n ' / ^ r c_conf i gur ed/ , $p' r c. conf
r c_conf i gur ed=YES

Add l ocal over r i des bel ow

host name=" nada"

cr i t i cal _f i l esyst ems_l ocal =" / cf $cr i t i cal _f i l esyst ems_l ocal "

no_swap=YES
savecor e=NO

Here / cf is added to critical file systems so that / net bsd symlink works in case
someone needs it, but as mentioned above, it’s not strictly necessary any more. Also, if you
put the kernel to UFS, you don’ t need that line either.

With no_swap=YES we tell that we intentionally configured the system without swap.
Also, savecore is disabled as we don’ t have wd0b anyway, so avoid complains.

Now check / et c/ t t ys , thought the defaults should be sane.

cd / mnt / et c
vi t t ys
[...]

And finally populate / dev . If you are ok with 1000+ devices in / dev , you can just run:

cd / mnt / dev
sh MAKEDEV al l

But if you want to avoid all those device nodes for raid and multiport serial cards you
can spent just a little bit more time and create only those device nodes that you need. The
example below is a baseline that is enough to give you a working system. Add more devices
according to your needs.

cd / mnt / dev

sh MAKEDEV st d
sh MAKEDEV r andom syst r ace l km cl ockct l
sh MAKEDEV wscons
sh MAKEDEV apm
sh MAKEDEV sci f 0 # <- sh3 specific serial
sh MAKEDEV pt m pt y0 t t y0 t t y1
sh MAKEDEV at abus0 at abus1 wd0 wd1
sh MAKEDEV bpf 0 bpf 1

Congratulations! At this point your CF card is ready. You can plug it into you HPC and
boot from it into multiuser.

Future Work
There are still a number of areas in which the handheld and pocket PC support within

NetBSD can be further improved.

• The sound drivers need work – whilst we have VoIP and softphone capabilities within
kphone and other packages, the sound drivers could do with an overhaul.

• Support for a windowing environment other than X would be beneficial. Qt/Embedded,
Qtopia or GPE or a similar solution would be attractive to some PDA manufacturers

• Microsoft’s Windows environments have set the standard for integrated applications,
such as Microsoft Office, on PDAs. Whilst Open Office or Star Office is probably too
large to reside even on CF, and to run within acceptable limits on a PDA, it is still
possible to use other open source applications for the same functions

• Wide-area communications would benefit from better 3G, GPRS, and soft modem
support

• Java support in PDAs is becoming an increasing factor – whilst Sun’s JDK (versions 1.3
and 1.4) have been ported to i386 and SPARC platforms, there is little support for low-
power CPUs and architectures in the standard JDK, although it is almost definitely too
large and resource-hungry to fit on a PDA. Whilst there are many open-source Java
Virtual machines in existence, such as Wonka, kaffe and sablevm, few have the
Windowing Toolkit support to make them attractive propositions for devices with
limited input options, and limited screen area. Sun’s J2ME is a possibility, more work
needs to be done in this area.

The Ultimate Geek PDA
It is interesting to predict what the ultimate geek PDA will look like in a few years. We

are seeing PDAs emerge from Japan right now with 2.1 inch screens, yet with VGA
resolution. Much has emerged in this area over the last six months, and it is expected that this
trend will continue. So it looks like the screen real-estate problem may be being addressed.

Input to the PDA remains a problem. It might be possible that voice recognition will
gain ground in the next few years, rendering hunt-and-peck stylus input obsolete. Input is
probably the most tortuous aspect to using a PDA these days.

Compact Flash cards may increase in size, and may also decrease in price, allowing the
operating system to do more, and for applications to store more data.

Battery life may need to improve, and we may see more takeup, especially in Europe, of
services more tightly integrated with what has been viewed as the telephone company
domain. Indeed, this crossover into the realm of mobile telephone handsets has some
interesting possibilities, and there is a lot of movement in this area.

The consolidation of a number of personal devices – pager, mobile telephone, PDA –
into one PDA, Internet-enabled through 3G or GPRS, is an attractive possibility to a number
of manufacturers, service providers and software vendors.

Conclusion
Handheld PCs and pocket PCs present a number of challenges for users – their size is

what makes them appealing, and yet it is also the cause of some of the major human factors
problems, most notably screen real-estate and keyboard and mouse input. Whilst NetBSD can
be installed and will run very nicely on such machines, there is a certain amount of future
work which needs to be done using NetBSD on these platforms to make the experience even
better. These PDAs are not expected to be compute engines – their appeal lies in their
portability and size. Cross-building of the operating system and the windowing system is
obviously a necessary pre-requisite for developing with PDAs, and NetBSD has these
features already. Cross-building of third-party applications for PDAs is also needed – this
aspect has been addressed in other papers.

